精英家教网 > 高中数学 > 题目详情

【题目】某生物小组为了研究温度对某种酶的活性的影响进行了一组实验,得到的实验数据经整理得到如下的折线图:

1)由图可以看出,这种酶的活性与温度具有较强的线性相关性,请用相关系数加以说明;

2)求关于的线性回归方程,并预测当温度为时,这种酶的活性指标值.(计算结果精确到0.01

参考数据:.

参考公式:相关系数.

回归直线方程.

【答案】1)详见解析(2)线性回归方程为;预测当温度为时,这种酶的活性指标值为13.22

【解析】

1)根据题中所给数据,利用公式求得非常接近1,从而得到酶的活性与温度具有较强的线性关系;

2)根据公式求得关于的线性回归方程为,将代入回归方程,即可求得结果.

解:(1)由题可知,

因为非常接近1,所以酶的活性与温度具有较强的线性相关性.

2)由题可知,

所以关于的线性回归方程为

时,.

故预测当温度为时,这种酶的活性指标值为13.22.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①若样本数据的方差为,则数据的方差为

②“平面向量的夹角为锐角,则”的逆命题为真命题;

③命题“,均有”的否定是“,均有”;

是直线与直线平行的必要不充分条件.

其中正确的命题个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的零点个数;

(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知首项均为的数列,满足.

(1)令,求数列的通项公式;

(2)若数列为各项均为正数的等比数列,且,设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在点处的切线方程;

(2)当时,求函数的单调递增区间;

(3)当时,证明: (其中为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥SABC中,SA=AB=AC=BC=SB=SC,OBC的中点

(1)求证:SO⊥平面ABC

(2)在线段AB上是否存在一点E,使二面角B—SC-E的平面角的余弦值为?若存在,求的值,若不存在,试说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的内角的对边分别为,2acosCc=2b.

(1)若点在边,,的面积;

(2)若为锐角三角形,,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线是异面直线,在平面内,在平面内,是平面与平面的交线,则下列命题正确的是( )

A. 都不相交 B. 都相交

C. 至多与中的一条相交 D. 至少与中的一条相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为A,若时总有,则称为单函数.例如,函数=2x+1()是单函数.下列命题:

函数xR)是单函数;

指数函数xR)是单函数;

为单函数,,则

在定义域上具有单调性的函数一定是单函数.

其中的真命题是_________.(写出所有真命题的编号)

查看答案和解析>>

同步练习册答案