精英家教网 > 高中数学 > 题目详情

已知超几何分布满足X~H(8,5,3),则P(X=2)= .

【解析】

试题分析:根据超几何分布得N=8,M=5,n=2,由超几何概率计算公式可得.

【解析】
∵超几何分布满足X~H(8,5,3),

∴P(X=2)=C=

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源:2014-2015学年贵州省高三模拟考试文科数学试卷(解析版) 题型:选择题

的值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修4-1 2.2直线与球、平面与球位置关系(解析版) 题型:填空题

如图,一个半径为1的球O放在桌面上,桌面上的一点A1的正上方有一光源A,AA1与球相切,AA1=3,球在桌面上的投影是一个椭圆C,记椭圆C的四个顶点分别为A1、A2、B1、B2.则对于下列的命题:

①若点P为椭圆C上的一个动点,则tan∠OAP=

②椭圆C的长轴长为4;

③若沿直线B1B2的方向为主视方向,则几何体A﹣A1B1A2B2的左视图的面积为3

④椭圆C的离心率为

其中真命题的序号为 .(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修2-3 2.2超几何分布练习卷(解析版) 题型:解答题

生产方提供50箱的一批产品,其中有2箱不合格产品.采购方接收该批产品的准则是:从该批产品中任取5箱产品进行检测,若至多有1箱不合格产品,便接收该批产品.问:该批产品被接收的概率是多少?

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修2-3 2.2超几何分布练习卷(解析版) 题型:解答题

已知10件不同的产品中共有3件次品,现对它们进行一一测试,直到找出所有3件次品为止.

(1)求恰好在第5次测试时3件次品全部被测出的概率;

(2)记恰好在第k次测试时3件次品全部被测出的概率为f(k),求f(k)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修2-3 2.2超几何分布练习卷(解析版) 题型:解答题

电子手表厂生产某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品,则P(1≤X≤2013)等于( )

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修2-2 2.5简单复合函数求导法则练习卷(解析版) 题型:?????

曲线f(x)=lnx+2x在点(1,f(1))处的切线方程是( )

A.3x﹣y+1=0 B.3x﹣y﹣1=0 C.3x+y﹣1=0 D.3x﹣y﹣5=0

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修2-2 2.4导数的四则运算法则练习卷(解析版) 题型:?????

若f(x)=sinx+cosx,则等于( )

A.﹣1 B.0 C.1 D.2

查看答案和解析>>

科目:高中数学 来源:[同步]2014年北师大版选修2-1 2.1从平面向量到空间向量练习卷(解析版) 题型:填空题

,则= .

查看答案和解析>>

同步练习册答案