【题目】如图,为多面体,平面与平面垂直,点在线段上, 都是正三角形.
(1)证明:直线∥面;
(2)在线段上是否存在一点,使得二面角的余弦值是,若不存在请说明理由,若存在请求出点所在的位置。
【答案】(1)见解析;(2)见解析.
【解析】
(1)通过证明,证得平面平面,由此证得平面.(2)设的中点为,以为原点,、、所在直线分别为轴、轴、轴建立空间直角坐标系设出点的坐标,利用平面和平面的法向量计算二面角的余弦值,由此列方程解出点的坐标,确定为的中点.
(1)依题意,在平面中,,
又平面,平面 ①;同理,在平面中,
,平面 ②; 面, 面,面,面,
由①②可得,平面 平面.又面,所以直线∥面.
(2)设的中点为,以为原点,、、所在直线分别为轴、轴、轴建立空间直角坐标系。易知,,,,.
设,.可得,设为平面的法向量,
由有,可取,
又面的法向量可取,所以,
所以,又,。
存在满足条件的点,为中点。
科目:高中数学 来源: 题型:
【题目】已知双曲线C:-=1(a>0,b>0)与椭圆+=1的焦点重合,离心率互为倒数,设F1、F2分别为双曲线C的左、右焦点,P为右支上任意一点,则的最小值为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列说法是否正确,并说明理由.
(1)如果一件事成功的概率是0.1%,那么它必然不会成功;
(2)某校九年级共有学生400人,为了了解他们的视力情况,随机调查了20名学生的视力并对所得数据进行整理,若视力在0.95~1.15范围内的频率为0.3,则可估计该校九年级学生的视力在0.95~1.15范围内的人数为120;
(3)甲袋中有12个黑球,4个白球,乙袋中有20个黑球,20个白球,分别从两个袋子中摸出1个球,要想摸出1个黑球,由于乙袋中黑球的个数多些,故选择乙袋成功的机会较大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的最大值为, 的图像关于轴对称.
(1)求实数, 的值.
(2)设,则是否存在区间,使得函数在区间上的值域为?若存在,求实数的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数),曲线与轴交于两点.以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(1)求直线的普通方程及曲线的极坐标方程;
(2)若直线与曲线在第一象限交于点,且线段的中点为,点在曲线上,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题:函数且,命题:集合,且.
(1)若命题中有且仅有一个为真命题,求实数的取值范围;
(2)设皆为真命题时,的取值范围为集合,已知,若,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com