精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线C1(a>0b>0)与椭圆1的焦点重合,离心率互为倒数,设F1F2分别为双曲线C的左右焦点,P为右支上任意一点,则的最小值为________

【答案】8

【解析】

求出椭圆的离心率和焦点,从而得双曲线的离心率,双曲线的实半轴长,可得,由双曲线的定义得PF1PF22,这样就可表示为的函数,于是可利用基本不等式求得最小值

设椭圆的长半轴长为a1,短半轴长为b1,半焦距为c

c2

故椭圆的离心率e1

从而双曲线的离心率,可得a1

根据双曲线的定义有PF1PF22a,即PF1PF22

PF24

由双曲线的范围可得PF2ca1

根据基本不等式可得PF24≥248

当且仅当PF2

PF22时取

所以的最小值为8.

故答案为:8

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设二次函数的图像过点,且对于任意实数,不等式恒成立

(1)求的表达式;

(2)设,若上是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线.轴交于两点,是圆上不同于的一动点,所在直线分别与交于.

(1)当时,求以为直径的圆的方程;

2)证明:以为直径的圆截轴所得弦长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平行四边形中,,过点作的垂线,交的延长线于点.连结,交于点,如图1,将沿折起,使得点到达点的位置,如图2.

(1)证明:平面平面

(2)若的中点,的中点,且平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线

(1)求曲线在点处的切线方程;(2)过点作直线与曲线交于两点,求线段的中点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为2的正方形,侧面底面,且分别为棱的中点.

1)求证:

2)求异面直线所成角的余弦值;

3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线 .

(1)判断直线与曲线的位置关系;

(2)若是曲线上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为多面体,平面与平面垂直,点在线段上, 都是正三角形.

(1)证明:直线∥面

(2)在线段上是否存在一点,使得二面角的余弦值是,若不存在请说明理由,若存在请求出点所在的位置。

查看答案和解析>>

同步练习册答案