【题目】已知双曲线C:-=1(a>0,b>0)与椭圆+=1的焦点重合,离心率互为倒数,设F1、F2分别为双曲线C的左、右焦点,P为右支上任意一点,则的最小值为________.
科目:高中数学 来源: 题型:
【题目】已知圆,直线.圆与轴交于两点,是圆上不同于的一动点,所在直线分别与交于.
(1)当时,求以为直径的圆的方程;
(2)证明:以为直径的圆截轴所得弦长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平行四边形中,,,过点作的垂线,交的延长线于点,.连结,交于点,如图1,将沿折起,使得点到达点的位置,如图2.
(1)证明:平面平面;
(2)若为的中点,为的中点,且平面平面,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是边长为2的正方形,侧面底面,且,,分别为棱,的中点.
(1)求证:;
(2)求异面直线与所成角的余弦值;
(3)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线 .
(1)判断直线与曲线的位置关系;
(2)若是曲线上的动点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,为多面体,平面与平面垂直,点在线段上, 都是正三角形.
(1)证明:直线∥面;
(2)在线段上是否存在一点,使得二面角的余弦值是,若不存在请说明理由,若存在请求出点所在的位置。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com