【题目】已知函数的最大值为, 的图像关于轴对称.
(1)求实数, 的值.
(2)设,则是否存在区间,使得函数在区间上的值域为?若存在,求实数的取值范围;若不存在,请说明理由.
【答案】(1), .(2)见解析.
【解析】【试题分析】(1)对求导,利用它的单调性求得当时函数取得最大值,解方程求得.根据二次函数的对称轴可求得.(2)由(1)知,利用的二阶导数判断出函数在区间内单调递增,故有, 问题转化为关于的方程在区间内是否存在两个不相等的实根来求解.利用分离常数法将分离出来后利用导数证明不存在.
【试题解析】
(1)由题意得,令,解得,
当时, ,函数单调递增;
当时, ,函数单调递减.
所以当时, 取得极大值,也是最大值,所以,解得.
又的图像关于轴对称,所以,解得.
(2)由(1)知, ,则,所以,令,则对恒成立,
所以在区间内单调递增,所以恒成立,
所以函数在区间内单调递增.
假设存在区间,使得函数在区间上的值域是,
则,
问题转化为关于的方程在区间内是否存在两个不相等的实根,
即方程在区间内是否存在两个不相等的实根,
令, ,则,
设, ,则对恒成立,所以函数在区间内单调递增,故恒成立,所以,所以函数在区间内单调递增,所以方程在区间内不存在两个不相等的实根.
综上所述,不存在区间,使得函数在区间上的值域是.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1(x)=max,H2(x)=min (max表示p,q中的较大值,min表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=( )
A.16B.-16
C.a2-2a-16D.a2+2a-16
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为、、三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).
(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;
(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系中,直线的参数方程为(为参数),在以直角坐标系的原点为极点, 轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(Ⅰ)求曲线的直角坐标方程和直线的普通方程;
(Ⅱ)若直线与曲线相交于, 两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某市主办的科技知识竞赛的学生成绩中随机选取了40名学生的成绩作为样本,已知这些成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组;第二组;;第六组,并据此绘制了如图所示的频率分布直方图.
求成绩在区间内的学生人数;
估计这40名学生成绩的众数和中位数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,河的两岸分别有生活小区和,其中,三点共线,与的延长线交于点,测得,,,,,若以所在直线分别为轴建立平面直角坐标系则河岸可看成是曲线(其中是常数)的一部分,河岸可看成是直线(其中为常数)的一部分.
(1)求的值.
(2)现准备建一座桥,其中分别在上,且,的横坐标为.写出桥的长关于的函数关系式,并标明定义域;当为何值时,取到最小值?最小值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要条件;
(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.
(1)求数列{xn}的通项公式;
(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P(x2,2),…,Pn+1(xn+1,n+1)得到折线P1P2…Pn+1,求由该折线与直线y=0,x=x1,x=xn+1所围成的区域的面积Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com