精英家教网 > 高中数学 > 题目详情

【题目】已知函数的最大值为 的图像关于轴对称.

1)求实数 的值.

2)设则是否存在区间使得函数在区间上的值域为若存在求实数的取值范围若不存在请说明理由.

【答案】(1) .2见解析.

【解析】试题分析(1)求导,利用它的单调性求得当时函数取得最大值,解方程求得.根据二次函数的对称轴可求得.(2)(1),利用的二阶导数判断出函数在区间内单调递增,故有, 问题转化为关于的方程在区间内是否存在两个不相等的实根来求解.利用分离常数法将分离出来后利用导数证明不存在.

试题解析

(1)由题意得解得

函数单调递增

函数单调递减.

所以当 取得极大值也是最大值所以解得.

的图像关于轴对称所以解得.

2)由(1)知 所以恒成立

所以在区间内单调递增所以恒成立

所以函数在区间内单调递增.

假设存在区间使得函数在区间上的值域是

问题转化为关于的方程在区间内是否存在两个不相等的实根

即方程在区间内是否存在两个不相等的实根

恒成立所以函数在区间内单调递增恒成立所以所以函数在区间内单调递增所以方程在区间内不存在两个不相等的实根.

综上所述不存在区间使得函数在区间上的值域是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设H1(x)=max,H2(x)=min (max表示p,q中的较大值,min表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=(  )

A.16B.-16

C.a2-2a-16D.a2+2a-16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).

(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;

(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,直线的参数方程为为参数),在以直角坐标系的原点为极点, 轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(Ⅰ)求曲线的直角坐标方程和直线的普通方程;

(Ⅱ)若直线与曲线相交于 两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数.

(Ⅰ)当时,求的解集;

(Ⅱ)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某市主办的科技知识竞赛的学生成绩中随机选取了40名学生的成绩作为样本,已知这些成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组;第二组;第六组,并据此绘制了如图所示的频率分布直方图.

求成绩在区间内的学生人数;

估计这40名学生成绩的众数和中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,河的两岸分别有生活小区,其中三点共线,的延长线交于点,测得,若以所在直线分别为轴建立平面直角坐标系则河岸可看成是曲线(其中是常数)的一部分,河岸可看成是直线(其中为常数)的一部分.

1)求的值.

2)现准备建一座桥,其中分别在上,且的横坐标为.写出桥的长关于的函数关系式,并标明定义域;当为何值时,取到最小值?最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={x|x<-3,或x>5},P={x|(xa)·(x-8)≤0}.

(1)求MP={x|5<x≤8}的充要条件;

(2)求实数a的一个值,使它成为MP={x|5<x≤8}的一个充分但不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{xn}是各项均为正数的等比数列,且x1x2=3,x3x2=2.

(1)求数列{xn}的通项公式;

(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P(x2,2),…,Pn+1(xn+1n+1)得到折线P1P2Pn+1,求由该折线与直线y=0,xx1xxn+1所围成的区域的面积Tn

查看答案和解析>>

同步练习册答案