精英家教网 > 高中数学 > 题目详情

【题目】从某市主办的科技知识竞赛的学生成绩中随机选取了40名学生的成绩作为样本,已知这些成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组;第二组;第六组,并据此绘制了如图所示的频率分布直方图.

求成绩在区间内的学生人数;

估计这40名学生成绩的众数和中位数.

【答案】(1)4;(2)

【解析】

1)根据小长方形的面积之和为,计算出内的频率,频率乘以,得到成绩在区间内的学生人数.(2)利用最高的小长方形的中点值作为众数.先计算的的频率,利用中位数是频率和为的位置,计算出中位数的值.

解:由频率分布直方图得成绩在区间内的频率为:

成绩在区间内的学生人数为:

由频率分布直方图估计这40名学生成绩的众数为:

由频率分布直方图得:的频率为:

的频率为:

估计这40名学生成绩的中位数为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点.

(1)求椭圆的标准方程;

(2)四边形的顶点在椭圆上,且对角线过原点,若,求证;四边形的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究昼夜温差大小与某疾病的患病人数之间的关系,经查询得到今年上半年每月15号的昼夜温差情况与患者的人数如表:

日期

115

215

315

415

515

615

昼夜温差

10

11

10

10

9

7

患者人数

21

26

20

18

16

8

研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

若选取的是1月与6月的两组数据,请根据25月份的数据,求出y关于x的线性回归方程

若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问中所得线性回归方程是否理想?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内动点到两定点的距离之和为4.

(Ⅰ)求动点的轨迹的方程;

(Ⅱ)已知直线的倾斜角均为,直线过坐标原点且与曲线相交于 两点,直线过点且与曲线是交于 两点,求证:对任意 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为 的图像关于轴对称.

1)求实数 的值.

2)设则是否存在区间使得函数在区间上的值域为若存在求实数的取值范围若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆,点是圆上任意一点,线段的垂直平分线和半径相交于.

(1)求动点的轨迹的方程;

(2)已知是轨迹的三个动点,点在一象限, 关于原点对称,且,问的面积是否存在最小值?若存在,求出此最小值及相应直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为,左、右焦点分别为 .

(1)求椭圆的方程;

(2)若直线 与椭圆交于 两点,与以为直径的圆交于 两点,且满足,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由国家公安部提出,国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阀值与检验标准()》于日正式实施.车辆驾驶人员酒饮后或者醉酒后驾车血液中的酒精含量阀值见表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”见图,

瓶啤酒的情况

且图表示的函数模型,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:

(  )

驾驶行为类型

阀值

饮酒后驾车

醉酒后驾车

车辆驾车人员血液酒精含量阀值

A.B.C.D.

查看答案和解析>>

同步练习册答案