精英家教网 > 高中数学 > 题目详情
7.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=-2x上,则cos2θ=$-\frac{3}{5}$.

分析 根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tanθ的值,然后根据同角三角函数间的基本关系求出cosθ的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把cosθ的平方代入即可求出值.

解答 解:根据题意得:tanθ=-2,
∴cos2θ=$\frac{1}{1+ta{n}^{2}θ}$=$\frac{1}{5}$,
则cos2θ=2cos2θ-1=$\frac{2}{5}$-1=$-\frac{3}{5}$.
故答案为:$-\frac{3}{5}$.

点评 此题考查了任意角的三角函数定义,同角三角函数间的基本关系,以及二倍角的余弦函数公式,熟练掌握公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数y=|x-a|的图象关于直线x=2对称,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.等比数列{an}中,第1项为2,第2项为4,那么它的第3项为(  )
A.3B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={1,2,3,4},B={x∈Z||x|≤1},则A∩(∁ZB)=(  )
A.B.{4}C.{3,4}D.{2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设等比数列{an}的公比q=2,前n项和为Sn,则$\frac{S_3}{a_3}$的值为(  )
A.$\frac{15}{4}$B.$\frac{15}{2}$C.$\frac{7}{4}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2-2x,则f(-3)=(  )
A.-3B.3C.15D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.甲、乙、丙三人相互传球,第一次由甲将球传出,每次传球时,传球者将球等可能地传给另外两人中的任何一人.经过3次传球后,球仍在甲手中的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:方程$\frac{{x}^{2}}{9-2k}$+$\frac{{y}^{2}}{k}$=1表示焦点在y轴上的椭圆;命题q:方程$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{k}$=1表示双曲线,且离心率e∈($\sqrt{3}$,2),若命题p∧q为假命题,p∨q为真命题,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|x2-3x+2=0},B={x|2x2-ax+2=0},若A∩B=B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案