分析 根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tanθ的值,然后根据同角三角函数间的基本关系求出cosθ的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把cosθ的平方代入即可求出值.
解答 解:根据题意得:tanθ=-2,
∴cos2θ=$\frac{1}{1+ta{n}^{2}θ}$=$\frac{1}{5}$,
则cos2θ=2cos2θ-1=$\frac{2}{5}$-1=$-\frac{3}{5}$.
故答案为:$-\frac{3}{5}$.
点评 此题考查了任意角的三角函数定义,同角三角函数间的基本关系,以及二倍角的余弦函数公式,熟练掌握公式是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{15}{4}$ | B. | $\frac{15}{2}$ | C. | $\frac{7}{4}$ | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com