精英家教网 > 高中数学 > 题目详情
12.向量$\overrightarrow{a}$,$\overrightarrow{b}$均为非零向量,$(\overrightarrow a-2\overrightarrow b)⊥\overrightarrow a,(\overrightarrow b-2\overrightarrow a)⊥\overrightarrow b$,则$\overrightarrow a,\overrightarrow b$的夹角为$\frac{π}{3}$.

分析 根据向量垂直得出|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=$\sqrt{2\overrightarrow{a}•\overrightarrow{b}}$,代入向量的夹角公式计算即可.

解答 解:∵$(\overrightarrow a-2\overrightarrow b)⊥\overrightarrow a,(\overrightarrow b-2\overrightarrow a)⊥\overrightarrow b$,
∴${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}•\overrightarrow{b}$=0,${\overrightarrow{b}}^{2}$-2$\overrightarrow{a}•\overrightarrow{b}$=0,
即|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=$\sqrt{2\overrightarrow{a}•\overrightarrow{b}}$,
∴cos<$\overrightarrow{a},\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{\overrightarrow{a}•\overrightarrow{b}}{2\overrightarrow{a}•\overrightarrow{b}}$=$\frac{1}{2}$,
∴$\overrightarrow{a}与\overrightarrow{b}$的夹角为$\frac{π}{3}$.
故答案为$\frac{π}{3}$.

点评 本题考查了平面向量垂直与数量积的关系,平面向量的夹角公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.集合A={y|y=2x,x∈R},B={x∈Z|-2<x<4},则A∩B=(  )
A.{x|0<x<4}B.{1,2,3}C.{0,1,2,3}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.根据此程序框图输出S的值为$\frac{11}{12}$,则判断框内应填入的是(  )
A.i≤8?B.i≤6?C.i≥8?D.i≥6?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.非零向量$\overrightarrow{m}$,$\overrightarrow{n}$的夹角为$\frac{π}{3}$,且满足|$\overrightarrow{n}$|=λ|$\overrightarrow{m}$|(λ>0),向量组$\overrightarrow{{x}_{1}}$,$\overrightarrow{{x}_{2}}$,$\overrightarrow{{x}_{3}}$由一个$\overrightarrow{m}$和两个$\overrightarrow{n}$排列而成,向量组$\overrightarrow{{y}_{1}}$,$\overrightarrow{{y}_{2}}$,$\overrightarrow{{y}_{3}}$由两个$\overrightarrow{m}$和一个$\overrightarrow{n}$排列而成,若$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$所有可能值中的最小值为4$\overrightarrow{m}$2,则λ=$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在R上的函数y=f(x),当x∈[0,2]时,f(x)=4(1-|x-1|),且对任意实数x∈[2n-2,2n+1-2](n∈N*,n≥2),都有f(x)=$\frac{1}{2}$f($\frac{x}{2}$-1).若g(x)=f(x)-logax有且仅有3个零点,则实数a的取值范围是(  )
A.[2,10]B.[$\sqrt{2}$,$\sqrt{10}$]C.(2,10)D.[2,10)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=a{x^3}-2{x^2}+\frac{1}{2}x+\frac{1}{3}$,若f(x)至少存在一个大于0的零点x0,则实数a的取值范围是(  )
A.$(-∞,-\frac{10}{3}]$B.$[-\frac{10}{3},+∞)$C.$(-∞,\frac{7}{6}]$D.$[\frac{7}{6},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设△ABC的内角A、B、C所对的边分别为a、b、c,若a2sinC=4sinA,cosB=$\frac{\sqrt{7}}{4}$,则△ABC的面积为(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点O为△ABC的外心,且$|{\overrightarrow{BA}}|=2,|{\overrightarrow{BC}}|=6$,则$\overrightarrow{BO}•\overrightarrow{AC}$=(  )
A.-32B.-16C.32D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知F1、F2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,点P为双曲线C右支上一点,直线PF1与圆x2+y2=a2相切,且|PF2|=|F1F2|,则双曲线C的离心率为(  )
A.$\frac{\sqrt{10}}{3}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.2

查看答案和解析>>

同步练习册答案