精英家教网 > 高中数学 > 题目详情
2.集合A={y|y=2x,x∈R},B={x∈Z|-2<x<4},则A∩B=(  )
A.{x|0<x<4}B.{1,2,3}C.{0,1,2,3}D.

分析 根据指数函数的值域求出集合A,化简集合B,根据交集的定义写出A∩B.

解答 解:集合A={y|y=2x,x∈R}={y|y>0},
B={x∈Z|-2<x<4}={-1,0,1,2,3},
则A∩B={1,2,3}.
故选:B.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若 x,y 满足$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≤0\\ y≥0\end{array}\right.$,则 z=y-2x 的最大值为(  )
A.8B.4C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.两条曲线的参数方程分别是$\left\{\begin{array}{l}{x=co{s}^{2}θ-1}\\{y=2+si{n}^{2}θ}\end{array}\right.$(θ为参数)和$\left\{\begin{array}{l}{x=3cost}\\{y=2sint}\end{array}\right.$(t为参数),则其交点个数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知在平面直角坐标系中,椭圆C的参数方程为$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).
(I)以原点为极点,x轴的正半轴为极轴建立极坐标系,求椭圆C的极坐标方程;
(Ⅱ)设M(x,y)为椭圆C上任意一点,求x+2y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:函数y=lg(1-x)在(-∞,1)上单调递减,命题q:函数y=2cosx是偶函数,则下列命题中为真命题的是(  )
A.p∧qB.(¬p)∨(¬q)C.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某次数学测试之后,数学组的老师对全校数学总成绩分布在[105,135)的n名同学的19题成绩进行了分析,数据整理如下:
 组数 分组 19题满分人数 19题满分人数占本组人数比例
 第一组[105,110) 15 0.3
 第二组[110,115) 30 0.3
 第三组[115,120) x 0.4
 第四组[120,125) 100 0.5
 第五组[125,130) 120 0.6
 第六组[130,135) 195 y
(Ⅰ)补全所给的频率分布直方图,并求n,x,y的值;
(Ⅱ)现从[110,115)、[115,120)两个分数段的19题满分的试卷中,按分层抽样的方法抽取6份进行展出,并从6份试卷中选出两份作为优秀试卷,求优秀试卷分别来自两个分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面内将点A(2,1)绕原点按逆时针方向旋转$\frac{3π}{4}$,得到点B,则点B的坐标为(-$\frac{3\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“x>1”是“x2+2x>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.向量$\overrightarrow{a}$,$\overrightarrow{b}$均为非零向量,$(\overrightarrow a-2\overrightarrow b)⊥\overrightarrow a,(\overrightarrow b-2\overrightarrow a)⊥\overrightarrow b$,则$\overrightarrow a,\overrightarrow b$的夹角为$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案