精英家教网 > 高中数学 > 题目详情
10.已知在平面直角坐标系中,椭圆C的参数方程为$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).
(I)以原点为极点,x轴的正半轴为极轴建立极坐标系,求椭圆C的极坐标方程;
(Ⅱ)设M(x,y)为椭圆C上任意一点,求x+2y的取值范围.

分析 (I)椭圆C的参数方程为$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$,消去参数,可得普通方程,即可求椭圆C的极坐标方程;
(Ⅱ)设M(x,y)为椭圆C上任意一点,则x+2y=3cosθ+4sinθ=5sin(θ+α),即可求x+2y的取值范围.

解答 解:(I)椭圆C的参数方程为$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$,消去参数,可得普通方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1,极坐标方程为${ρ}^{2}=\frac{36}{4+5si{n}^{2}θ}$;
(Ⅱ)设M(x,y)为椭圆C上任意一点,则x+2y=3cosθ+4sinθ=5sin(θ+α),
∴x+2y的取值范围是[-5,5].

点评 本题考查三种方程的转化,考查参数方程的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若实数x,y满足约束条件$\left\{\begin{array}{l}{x≤1}\\{y≤2}\\{2x+y≥2}\end{array}$,则z=x2+y2的最小值是(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{4}{5}$C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若sin2t=-${∫}_{0}^{t}$cosxdx,其中t∈(0,π),则t=(  )
A.$\frac{2π}{3}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\sqrt{3}$sinxcosx+cos2x
(I)求函数f(x)的最小正周期;
(II)若-$\frac{π}{2}$<α<0,f(α)=$\frac{5}{6}$,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x+$\frac{1}{2}$)=$\frac{{x}^{2}+xcosx+2017}{{x}^{2}+2017}$,则$\sum_{i=1001}^{1016}$f($\frac{i}{2017}$)=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数z满足(z-i)(5-i)=26,则z的共轭复数为(  )
A.-5-2iB.-5+2iC.5-2iD.5+2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.集合A={y|y=2x,x∈R},B={x∈Z|-2<x<4},则A∩B=(  )
A.{x|0<x<4}B.{1,2,3}C.{0,1,2,3}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=|x-1|-|2x+1|的最大值为m.
(Ⅰ)作出函数f(x)的图象;
(Ⅱ)若a2+2c2+3b2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.非零向量$\overrightarrow{m}$,$\overrightarrow{n}$的夹角为$\frac{π}{3}$,且满足|$\overrightarrow{n}$|=λ|$\overrightarrow{m}$|(λ>0),向量组$\overrightarrow{{x}_{1}}$,$\overrightarrow{{x}_{2}}$,$\overrightarrow{{x}_{3}}$由一个$\overrightarrow{m}$和两个$\overrightarrow{n}$排列而成,向量组$\overrightarrow{{y}_{1}}$,$\overrightarrow{{y}_{2}}$,$\overrightarrow{{y}_{3}}$由两个$\overrightarrow{m}$和一个$\overrightarrow{n}$排列而成,若$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$所有可能值中的最小值为4$\overrightarrow{m}$2,则λ=$\frac{8}{3}$.

查看答案和解析>>

同步练习册答案