精英家教网 > 高中数学 > 题目详情
5.已知函数f(x+$\frac{1}{2}$)=$\frac{{x}^{2}+xcosx+2017}{{x}^{2}+2017}$,则$\sum_{i=1001}^{1016}$f($\frac{i}{2017}$)=16.

分析 f(x+$\frac{1}{2}$)=$\frac{{x}^{2}+xcosx+2017}{{x}^{2}+2017}$=1+$\frac{xcosx}{{x}^{2}+2017}$,可得$f(\frac{1}{2}-x)$=1-$\frac{xcosx}{{x}^{2}+2017}$,f(x+$\frac{1}{2}$)+$f(\frac{1}{2}-x)$=2,f(1-x)+f(x)=2,再利用“倒序相加”即可得出.

解答 解:∵f(x+$\frac{1}{2}$)=$\frac{{x}^{2}+xcosx+2017}{{x}^{2}+2017}$=1+$\frac{xcosx}{{x}^{2}+2017}$,
∴$f(\frac{1}{2}-x)$=1-$\frac{xcosx}{{x}^{2}+2017}$,
∴f(x+$\frac{1}{2}$)+$f(\frac{1}{2}-x)$=2,
∴f(1-x)+f(x)=2,
则2$\sum_{i=1001}^{1016}$f($\frac{i}{2017}$)=$\sum_{i=1001}^{1016}$f($\frac{i}{2017}$)+$\sum_{i=1001}^{1016}f(\frac{2017-i}{2017})$=2×16=32.
∴$\sum_{i=1001}^{1016}$f($\frac{i}{2017}$)=16.
故答案为:16.

点评 本题考查了“倒序相加”、函数的奇偶性、数列求和,考查了推理能力 与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在三棱柱ABC-A1B1C1中,底面为正三角形,侧棱垂直底面,AB=4,AA1=6.若E,F分别是棱BB1,CC1上的点,且$BE={B_1}E,{C_1}F=\frac{1}{3}C{C_1}$,则异面直线A1E与AF所成角的余弦值为(  )
A.$-\frac{{\sqrt{2}}}{6}$B.$\frac{{\sqrt{2}}}{6}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b是两条不同的直线,α是平面,且b?α,那么“a∥α”是“a∥b”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.两条曲线的参数方程分别是$\left\{\begin{array}{l}{x=co{s}^{2}θ-1}\\{y=2+si{n}^{2}θ}\end{array}\right.$(θ为参数)和$\left\{\begin{array}{l}{x=3cost}\\{y=2sint}\end{array}\right.$(t为参数),则其交点个数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图古铜钱外圆内方,外圆直径为4cm,中间是边长为1cm的正方形孔,随机地在古铜钱所在圆内任取一点,则该点刚好位于孔中的概率是$\frac{1}{4π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知在平面直角坐标系中,椭圆C的参数方程为$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).
(I)以原点为极点,x轴的正半轴为极轴建立极坐标系,求椭圆C的极坐标方程;
(Ⅱ)设M(x,y)为椭圆C上任意一点,求x+2y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:函数y=lg(1-x)在(-∞,1)上单调递减,命题q:函数y=2cosx是偶函数,则下列命题中为真命题的是(  )
A.p∧qB.(¬p)∨(¬q)C.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面内将点A(2,1)绕原点按逆时针方向旋转$\frac{3π}{4}$,得到点B,则点B的坐标为(-$\frac{3\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A,B,C的对边分别为a、b、c,则“sinA>sinB”是“a>b”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案