精英家教网 > 高中数学 > 题目详情

已知双曲线的离心率为,右准线方程为,
(1)求双曲线C的方程;
(2)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在以双曲线C的实轴长为直径的圆上,求m的值.

(1);(2).

解析试题分析:(1)因为这是双曲线的标准方程,故由双曲线的几何性质知,这样就可求出双曲线方程;(2)这是直线与双曲线相交,且与相交弦中点有关问题,一般方法就是把直线方程与双曲线方程联立方程组,消去得关于的方程,再由韦达定理得,如果记AB中点为,则,从而可把中点坐标用参数表示出来了,最后利用中点M在圆上,可求出值.
试题解析:(1)由已知得,解得,∴
∴双曲线方程为.                4分
(2)以双曲线实轴为直径的圆的方程是:,把代入双曲线方程刘:
,令的中点,则有:
 ,代入圆方程
中得: ,所以.
考点:(1)双曲线的几何性质;(2)直线与双曲线相交问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.
(1)求动圆圆心的轨迹M的方程;
(2)设过点P,且斜率为-的直线与曲线M相交于A、B两点. 问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)抛物线与椭圆有公共焦点,设轴交于点,不同的两点 上(不重合),且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,已知中心在原点,离心率为的椭圆E的一个焦点为圆的圆心.
⑴求椭圆E的方程;
⑵设P是椭圆E上一点,过P作两条斜率之积为的直线,当直线都与圆相切时,求P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,离心率为,长轴长为,直线交椭圆于不同的两点
(1)求椭圆的方程;
(2)求的取值范围;
(3)若直线不经过椭圆上的点,求证:直线的斜率互为相反数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆是其左右焦点,离心率为,且经过点.
(1)求椭圆的标准方程;
(2)若分别是椭圆长轴的左右端点,为椭圆上动点,设直线斜率为,且,求直线斜率的取值范围;
(3)若为椭圆上动点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=.

(Ⅰ)求点S的坐标;
(Ⅱ)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;
①判断直线MN的斜率是否为定值,并说明理由;
②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为,直线l的方程为: 
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线l与椭圆相交于两点
①若线段中点的横坐标为,求斜率的值;
②已知点,求证:为定值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且
(Ⅰ)求双曲线的方程;
(Ⅱ)以双曲线的另一焦点为圆心的圆与直线相切,圆.过点作互相垂直且分别与圆、圆相交的直线,设被圆截得的弦长为被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案