精英家教网 > 高中数学 > 题目详情
1.已知点O是△ABC的外心,a,b,c分别为角A,B,C的对边,若2c2-c+b2=0,则$\overrightarrow{BC}$•$\overrightarrow{AO}$的最大值是(  )
A.$\frac{1}{12}$B.$\frac{1}{24}$C.$\frac{1}{8}$D.$\frac{1}{6}$

分析 由b2=c-2c2>0得出c的范围,用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{BC}$,根据向量的数量级定义得出$\overrightarrow{BC}$•$\overrightarrow{AO}$关于c的函数.求出此函数的最大值即可.

解答 解:过OOD⊥AB于D,OE⊥AC于E,则D,E分别是AB,AC的中点.
∴$\overrightarrow{BC}$•$\overrightarrow{AO}$=$\overrightarrow{AO}•(\overrightarrow{AC}-\overrightarrow{AB})$=$\overrightarrow{AO}•\overrightarrow{AC}$-$\overrightarrow{AO}•\overrightarrow{AB}$=AC•AE-AB•AD=$\frac{{b}^{2}-{c}^{2}}{2}$.
∵2c2-c+b2=0,∴b2=c-2c2>0,解得0$<c<\frac{1}{2}$.
∴$\overrightarrow{BC}•\overrightarrow{AO}$=$\frac{c-3{c}^{2}}{2}$=-$\frac{3}{2}$(c-$\frac{1}{6}$)2+$\frac{1}{24}$.
∴当c=$\frac{1}{6}$时,$\overrightarrow{BC}$•$\overrightarrow{AO}$取得最大值$\frac{1}{24}$.
故选B.

点评 本题考查了平面向量的数量级运算,二次函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某地修建防洪渠道,其直截面图是等腰梯形ABCD(如图),底CD=40,腰AD=40,为使防洪渠道的通水量最大,应将防洪渠道的上口AB的宽设计为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?x∈(0,+∞),x≥lnx+1,命题q:?x∈[0,+∞),sinx>x,则下列结论正确的是(  )
A.p∧q是真命题B.¬p∨q是真命题C.¬q是假命题D.p∧¬q是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={x|0≤x≤6},集合B={x|3x2+2x-8≤0},则A∪B=(  )
A.[0,$\frac{4}{3}$]B.[-2,$\frac{4}{3}$]C.[0,6]D.[-2,6]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\frac{cosx}{{{x^2}+1}}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a-b=1,c=2,sinA=2sinB.
(1)求△ABC的面积;
(2)求sin(2A-B).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数f(x)=$\sqrt{x-6}$+$\sqrt{12-x}$的最大值及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{(\frac{1}{4})^{x},x≤0}\end{array}\right.$,若f(x)≥2,则x的取值范围是(-∞,-$\frac{1}{2}$]∪(0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在等比数列{an}中,若a1=3,q=2,求a3与a5的等比中项.

查看答案和解析>>

同步练习册答案