| A. | tanα=3 | B. | sinα=$\frac{\sqrt{10}}{10}$ | C. | tan2(α+$\frac{π}{4}$)=$\frac{1}{4}$ | D. | cosα=$\frac{1}{3}$ |
分析 先求出tanβ=-3,再分别计算四个选项中的角的正切值,由此能求出与β互为“亲情角”的角.
解答 解:∵tan(β-$\frac{π}{4}$)=2,
∴$\frac{tanβ-tan\frac{π}{4}}{1+tanβtan\frac{π}{4}}=2$,解得tanβ=-3,
在A中,tanα=3≠tanβ,故A不成立;
在B中,sinα=$\frac{\sqrt{10}}{10}$,cosα=$±\sqrt{1-(\frac{\sqrt{10}}{10})^{2}}$=$±\frac{3\sqrt{10}}{10}$,tanα=$\frac{sinα}{cosα}$=$±\frac{1}{3}$,故B不成立;
在C中,tan2(α+$\frac{π}{4}$)=$\frac{1}{4}$,$tan(α+\frac{π}{4})=±\frac{1}{2}$,
当tanα=-3时,$tan(α+\frac{π}{4})$=$\frac{tanα+tan\frac{π}{4}}{1-tanαtan\frac{π}{4}}$=$\frac{-3+1}{1+3}$=-$\frac{1}{2}$,成立,故C成立;
在C中,cosα=$\frac{1}{3}$,sinα=$±\sqrt{1-(\frac{1}{3})^{2}}$=$±\sqrt{1-\frac{1}{9}}$=$±\frac{2\sqrt{2}}{3}$,
tan$α=\frac{sinα}{cosα}$=$±2\sqrt{2}$,故D不成立.
故选:C.
点评 本题考查角的求法,是基础题,解题时要认真审题,注意同角三角函数关系式和两角和与差的正弦、余弦、正切公式的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{15}$ | B. | 3$\sqrt{2}$ | C. | $\sqrt{30}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1] | B. | [3,+∞) | C. | (-∞,-1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com