精英家教网 > 高中数学 > 题目详情
已知在△ABC中,角A、B、C所对的边分别为a、b、c,且b2=a2+c2-
3
ac,c=
3
b

(1)求角A;
(2)若△ABC的外接圆半径为2,求△ABC的面积.
分析:(1)根据题中等式,结合余弦定理算出cosB=
3
2
,从而得到B=
π
6
.由c=
3
b结合正弦定理,算出sinC=
3
sinB=
3
2
,进而得到C=
π
3
或C=
3
,最后由三角形内角和定理即可算出角A的大小.
(2)根据正弦定理,得b=2RsinB,c=2RsinC,从而S△ABC=
1
2
bcsinA=2R2sinAsinBsinC
,再代入(1)中求出的数据,即可得到△ABC的面积.
解答:解:(1)∵在△ABC中,b2=a2+c2-
3
ac

∴cosB=
a2+c2-b2
2ac
=
3
2

∵B∈(0,π),∴B=
π
6
…(3分)
∵c=
3
b,∴根据正弦定理,得sinC=
3
sinB=
3
sin
π
6
=
3
2

∵C∈(0,π),∴C=
π
3
或C=
3
…(6分)
当C=
π
3
时,A=π-B-C=
π
2
;当C=
3
时,A=π-B-C=
π
6

综上所述,A=
π
2
π
6
…(8分)
(2)∵
b
sinB
=
c
sinC
=2R
,∴b=2RsinB,c=2RsinC…(10分)
当A=
π
2
时,S△ABC=
1
2
bcsinA=2R2sinAsinBsinC=2
3
…(12分)
当A=
π
6
时,S△ABC=
1
2
bcsinA=2R2sinAsinBsinC=
3

综上所述:当A=
π
2
时,S△ABC=2
3
,当A=
π
6
时,S△ABC=
3
…(14分)
点评:本题给出三角形边之间的关系式,求角A的大小并求三角形的面积,着重考查了正弦定理的面积公式、三角形内角和定理与用正、余弦定理解三角形等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•吉安县模拟)已知在△ABC中,角A、B、C的对边长分别为a、b、c,已知向量
m
=(sinA+sinC,sinB-sinA),
n
=(sinA-sinC,sinB),且
m
n

(1)求角C的大小;
(2)若a2=b2+
1
2
c2
,试求sin(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,
3
4
),
b
=(cos(x+
π
3
),1)函数f(x)=
a
b

(1)求f(x)的最值和单调递减区间;
(2)已知在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=0,a=
3
,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A,B,C的对边分别为a,b,c,且角A,B,C成等差数列,若边a,b,c成等比数列,求sinA•sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A,B,C所对的边分别为a,b,c,其长度分别为3,4,5,则
AB
BC
+
BC
CA
=
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•泸州二模)已知在△ABC中,角A、B、C的对边分别是a、b、c,且tanB=
2-
3
a2+c2-b2
BC
BA
=
1
2

(Ⅰ)求tanB的值;
(Ⅱ)求
2sin2
B
2
+2sin
B
2
cos
B
2
-1
cos(
π
4
-B)
的值.

查看答案和解析>>

同步练习册答案