精英家教网 > 高中数学 > 题目详情
已知数列{an}是公差不为零的等差数列,a1=2,且a2,a4,a8成等比数列.
(Ⅰ)求数列{an}的通项;
(Ⅱ)设{bn-(-1)nan}是等比数列,且b2=7,b5=71,求数列{bn}的前n项和Tn
考点:等差数列与等比数列的综合
专题:等差数列与等比数列
分析:(Ⅰ)设出等差数列的公差,结合a1=2,且a2,a4,a8成等比数列列式求出公差,则数列{an}的通项可求;
(Ⅱ)把数列{an}的通项代入bn-(-1)nan,由{bn-(-1)nan}是等比数列,且b2=7,b5=71列式求出等比数列的公比,得到等比数列的通项公式,则数列{bn}的通项可求,然后分n为奇数和偶数利用分组求和得答案.
解答: 解:(Ⅰ)设数列{an}的公差为d(d≠0),
∵a1=2且a2,a4,a8成等比数列,
∴(3d+2)2=(d+2)(7d+2),
解得d=2,
故an=a1+(n-1)d=2+2(n-1)=2n.
(Ⅱ)令cn=bn-(-1)nan,设{cn}的公比为q,
∵b2=7,b5=71,an=2n,
∴c2=b2-a2=7-4=3,c5=b5+a5=71+10=81,
q3=
c5
c2
=
81
3
=27
,故q=3,
cn=c2qn-2=3×3n-2=3n-1
bn-(-1)nan=3n-1
bn=3n-1+(-1)n2n
Tn=b1+b2+b3+…+bn
=(30+31+…+3n-1)+[-2+4-6+…+(-1)n2n]
当n为偶数时,Tn=
1-3n
1-3
+2×
n
2
=
3n+2n-1
2

当n为奇数时,Tn=
1-3n
1-3
+2×
n-1
2
-2n
=
3n-2n-3
2

Tn=
3n+2n-1
2
(n为偶数)
3n-2n-3
2
(n为奇数)
点评:本题考查等差数列与等比数列的通项公式,考查利用分组求和法求数列的和,体现了分类讨论的数学思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
b
的模分别为6和5,夹角为120°,则|
a
+
b
|等于(  )
A、
2
3
B、-
2
3
C、
31
D、
91

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y满足
x+y≥1
x-y≥-1
2x-y≤2
且z=ax+2y仅在点(1,0)处取得最小值,则实数a的取值范围是(  )
A、a∈(-4,0]
B、a∈[0,2)
C、a∈(-4,2)
D、a∈(-4,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(x,y)为函数y=1+lnx图象上一点,O为坐标原点,记直线OP的斜率k=f(x).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设F(x)=x+
1
x
-f(x),求函数F(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
m2
+
y2
n2
=1过点A(-1,0)和点B(1,0),其中一个焦点与抛物线y=
2
8
x2的焦点重合,C为E上异于顶点的任一点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若椭圆E所在平面上的两点M,G同时满足:①
.
GA
+
.
GB
+
.
GC
=
.
0
;②|
.
MA
|=|
.
MB
|=|
.
MC
|.试问直线MG的斜率是否为定值,若为定值求出该定值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某工厂生产的一种无盖冰淇淋纸筒为圆锥形,现一客户订制该圆锥纸筒,并要求该圆锥纸筒的容积为π.设圆锥纸筒底面半径为r,高为h.
(1)求出r与h满足的关系式;
(2)工厂要求制作该纸筒的材料最省,求最省时
h
r
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an},{bn}满足a1=b1,且对任意正整数n,{an}中小于等于n的项数恰为bn;{bn}中小于等于n的项数恰为an
(1)求a1
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)计算:C
 
2013
2014
+A
 
3
5

(2)观察下面一组组合数等式:C
 
1
n
=nC
 
0
n-1
;2C
 
2
n
=nC
 
1
n-1
;3C
 
3
n
=nC
 
2
n-1
;…由以上规律,请写出第k(k∈N*)个等式并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(x-1)lnx,g(x)=x3+(a-1)x2-ax.
(1)求函数f(x)在[t,t+
1
2
](t>0)上的最小值;
(2)是否存在整数a,使得对任意x∈[1,+∞),(x+1)f(x)≤g(x)恒成立,若存在,求a的最小值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案