精英家教网 > 高中数学 > 题目详情
10.已知数列{an}中an=$\sqrt{5n-1}$(n∈N*),将数列{an}中的整数项按原来的顺序组成数列{bn},则b2018的值为(  )
A.5035B.5039C.5043D.5047

分析 由an=$\sqrt{5n-1}$(n∈N*),n∈N*,可得此数列为$\sqrt{4}$,$\sqrt{9}$,$\sqrt{14}$,$\sqrt{19}$,$\sqrt{24}$,$\sqrt{29}$,$\sqrt{34}$,$\sqrt{39}$,$\sqrt{44}$,$\sqrt{49}$,$\sqrt{54}$,$\sqrt{59}$,$\sqrt{64}$,….可得an的整数项为:$\sqrt{4}$,$\sqrt{9}$,$\sqrt{49}$,$\sqrt{64}$,$\sqrt{144}$,$\sqrt{169}$,….即整数:2,3,7,8,12,13,….其规律就是各项之间是+1,+4,+1,+4,+1,+4这样递增的,可得其通项公式.

解答 解:由an=$\sqrt{5n-1}$(n∈N*),n∈N*,可得此数列为$\sqrt{4}$,$\sqrt{9}$,$\sqrt{14}$,$\sqrt{19}$,$\sqrt{24}$,$\sqrt{29}$,$\sqrt{34}$,$\sqrt{39}$,$\sqrt{44}$,$\sqrt{49}$,$\sqrt{54}$,$\sqrt{59}$,$\sqrt{64}$,….
an的整数项为:$\sqrt{4}$,$\sqrt{9}$,$\sqrt{49}$,$\sqrt{64}$,$\sqrt{144}$,$\sqrt{169}$,….
即整数:2,3,7,8,12,13,….
其规律就是各项之间是+1,+4,+1,+4,+1,+4这样递增的,
∴b2n-1=2+5(n-1)=5n-3,
b2n=3+5(n-1)=5n-2.
由2n=2018,解得n=1009,
∴b2018=5×1009-2=5043.
故选:C.

点评 本题考查了递推式的应用、观察分析猜想归纳数列通项公式、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设F1、F2是双曲线C的两个焦点,若曲线C上存在一点P与F1关于曲线C的一条渐近线对称,则双曲线C的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)是定义在R上的奇函数,且f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+1),x≥0}\\{g(x),x<0}\end{array}\right.$,则g(f(-8))=(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线C的中心为坐标原点,它的焦点F(2,0)到它的一条渐近线的距离为$\sqrt{3}$,则C的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势,某机构为了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在20~80岁(含20岁和80岁)之间的600人进行调查,并按年龄层次绘制频率分布直方图,如图所示,若规定年龄分布在60~80岁(含60岁和80岁)为“老年人”.
(1)若每一组数据的平均值用该区间中点值来代替,可估算所调查的600人的平均年龄;
(2)依据直方图计算所调查的600人年龄的中位数(结果保留一位小数);
(3)如果规定:年龄在20~40岁为青年人,在41~59岁为中年人,为了了解青年、中年、老年人对退休年龄延迟的态度,特意从这600人重随机抽取n人进行座谈,若从中年人中抽取了10人,试问抽取的座谈人数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设向量$\overrightarrow{a}$=(n,1),$\overrightarrow{b}$=(2,1),且|$\overrightarrow{a}$-$\overrightarrow{b}$|2=|$\overrightarrow{a}$|2+|$\overrightarrow{b}$|2,则n=(  )
A.-$\frac{1}{2}$B.-2C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={-1,0,1},B={x|x=sin$\frac{2k+1}{2}$π,k∈Z},则∁AB=(  )
A.?B.0C.{0}D.{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x2-3x+2<0},B={x|y=lg(3-x)},则A∩B=(  )
A.{x|1<x<2}B.{x|1<x<3}C.{x|2<x<3}D.{x|x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,-1),若$\overrightarrow{a}$∥($\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$•$\overrightarrow{b}$=$-\frac{5}{2}$.

查看答案和解析>>

同步练习册答案