精英家教网 > 高中数学 > 题目详情
20.设F1、F2是双曲线C的两个焦点,若曲线C上存在一点P与F1关于曲线C的一条渐近线对称,则双曲线C的离心率是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

分析 设F(-c,0),渐近线方程为y=$\frac{b}{a}$x,对称点为F'(m,n),运用中点坐标公式和两直线垂直的条件:斜率之积为-1,求出对称点的坐标,代入双曲线的方程,由离心率公式计算即可得到所求值.

解答 解:设F(-c,0),渐近线方程为y=$\frac{b}{a}$x,
对称点为F'(m,n),
即有$\frac{n}{m+c}$=-$\frac{a}{b}$,
且$\frac{1}{2}$•n=$\frac{1}{2}$•$\frac{b(m-c)}{a}$,
解得:m=$\frac{{b}^{2}-{a}^{2}}{c}$,n=-$\frac{2ab}{c}$,
将F'($\frac{{b}^{2}-{a}^{2}}{c}$,-$\frac{2ab}{c}$),即($\frac{{c}^{2}-2{a}^{2}}{c}$,-$\frac{2ab}{c}$),
代入双曲线的方程可得$\frac{({c}^{2}-2{a}^{2})^{2}}{{c}^{2}{a}^{2}}$-$\frac{4{a}^{2}{b}^{2}}{{c}^{2}{b}^{2}}$=1,
化简可得$\frac{{c}^{2}}{{a}^{2}}$-4=1,即有e2=5,
解得e=$\sqrt{5}$.
故选D.

点评 本题考查双曲线的离心率的求法,注意运用中点坐标公式和两直线垂直的条件:斜率之积为-1,以及点满足双曲线的方程,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若实数x、y满足$\left\{\begin{array}{l}{-2x+1≤y≤2x-1}\\{0<x≤3}\end{array}\right.$,则x-2y的取值范围是[-7,13].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.

(1)求分数在[50,60)内的频率、全班人数及分数在[80,90)内的频数;
(2)若要从分数在[80,100)内的试卷中任取两份分析学生的失分情况,求在抽取的试卷中,至少有一份试卷的分数在[90,100)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={-3,-2,-1},B={x∈Z|-2≤x≤1},则A∪B=(  )
A.{-1}B.{-2,-1}C.{-3,-2,-1,0}D.{-3,-2,-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设抛物线C:y2=4x的焦点为F,倾斜角为钝角的直线l过F且与C交于A,B两点,若|AB|=$\frac{16}{3}$,则l的斜率为(  )
A.-1B.-$\frac{\sqrt{3}}{3}$C.-$\frac{\sqrt{2}}{2}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数$f(x)=2cos(x-\frac{π}{3})-1$的图象向右平移$\frac{π}{3}$个单位,再把所有的点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得到函数y=g(x)的图象,则图象y=g(x)的一个对称中心为(  )
A.$(\frac{π}{6},0)$B.$(\frac{π}{12},0)$C.$(\frac{π}{6},-1)$D.$(\frac{π}{12},-1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow m=(\sqrt{2}cos\frac{x}{4},2cos\frac{x}{4})$,$\overrightarrow n=(\sqrt{2}cos\frac{x}{4},\sqrt{3}sin\frac{x}{4})$,设$f(x)=\overrightarrow m•\overrightarrow n$.
(Ⅰ)若f(α)=2,求$cos(α+\frac{π}{3})$的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-b)cosC=ccosB,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若变量x,y满足$\left\{\begin{array}{l}2x+y-2≥0\\ x+y-2≤0\\ x-y-1≤0\end{array}\right.$则$\frac{2x+1}{y+1}$的最小值为(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}中an=$\sqrt{5n-1}$(n∈N*),将数列{an}中的整数项按原来的顺序组成数列{bn},则b2018的值为(  )
A.5035B.5039C.5043D.5047

查看答案和解析>>

同步练习册答案