| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
分析 设F(-c,0),渐近线方程为y=$\frac{b}{a}$x,对称点为F'(m,n),运用中点坐标公式和两直线垂直的条件:斜率之积为-1,求出对称点的坐标,代入双曲线的方程,由离心率公式计算即可得到所求值.
解答 解:设F(-c,0),渐近线方程为y=$\frac{b}{a}$x,
对称点为F'(m,n),
即有$\frac{n}{m+c}$=-$\frac{a}{b}$,
且$\frac{1}{2}$•n=$\frac{1}{2}$•$\frac{b(m-c)}{a}$,
解得:m=$\frac{{b}^{2}-{a}^{2}}{c}$,n=-$\frac{2ab}{c}$,
将F'($\frac{{b}^{2}-{a}^{2}}{c}$,-$\frac{2ab}{c}$),即($\frac{{c}^{2}-2{a}^{2}}{c}$,-$\frac{2ab}{c}$),
代入双曲线的方程可得$\frac{({c}^{2}-2{a}^{2})^{2}}{{c}^{2}{a}^{2}}$-$\frac{4{a}^{2}{b}^{2}}{{c}^{2}{b}^{2}}$=1,
化简可得$\frac{{c}^{2}}{{a}^{2}}$-4=1,即有e2=5,
解得e=$\sqrt{5}$.
故选D.
点评 本题考查双曲线的离心率的求法,注意运用中点坐标公式和两直线垂直的条件:斜率之积为-1,以及点满足双曲线的方程,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-1} | B. | {-2,-1} | C. | {-3,-2,-1,0} | D. | {-3,-2,-1,0,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -$\frac{\sqrt{3}}{3}$ | C. | -$\frac{\sqrt{2}}{2}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{π}{6},0)$ | B. | $(\frac{π}{12},0)$ | C. | $(\frac{π}{6},-1)$ | D. | $(\frac{π}{12},-1)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5035 | B. | 5039 | C. | 5043 | D. | 5047 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com