【题目】双曲线
绕坐标原点
旋转适当角度可以成为函数
的图象,关于此函数
有如下四个命题:①
是奇函数;②
的图象过点
或
;③
的值域是
;④ 函数
有两个零点;则其中所有真命题的序号为________.
【答案】①②
【解析】
根据双曲线关于坐标原点对称,则旋转后得到的函数的
图象也关于原点对称,即有
为奇函数;根据双曲线的顶点、渐近线方程可得旋转后的
的图象的渐近线,再由对称性可得
的图象过
或
;根据
的图象按逆时针旋转
位于一三象限由图象可得顶点为点,不是极值点,则
的值域不是
,也不是
;分
的图象所在的象限讨论,得出
的图象与直线
没有交点,函数
没有零点.
解:双曲线
关于坐标原点对称,
可得旋转后得到的函数的
图象关于原点对称,
![]()
即有
为奇函数,故①对;
由双曲线的顶点为
,渐近线方程为
,
可得
的图象的渐近线为
和
,
图象关于直线
对称,
可得
的图象过
或
.
由对称性可得
的图象按逆时针
旋转位于—三象限;
按顺时针旋转
位于二四象限;故②对;
的图象按逆时针旋转
位于一三象限由图象可得顶点为点
或
..
不是极值点,则
的值域不是
;
的图象按顺时针旋转
位于二四象限,由对称性可得
的值域也不是
,故③不对;
当
的图象位于一三象限时,
的图象与直线
有两个交点,函数
有两个零点;
当
的图象位于二四象限时,
的图象与直线
没有交点,函数
没有零点故④错.
故真命题为:①②
故答案为:①②
科目:高中数学 来源: 题型:
【题目】为满足人们的阅读需求,图书馆设立了无人值守的自助阅读区,提倡人们在阅读后将图书分类放回相应区域.现随机抽取了某阅读区500本图书的分类归还情况,数据统计如下(单位:本).
文学类专栏 | 科普类专栏 | 其他类专栏 | |
文学类图书 | 100 | 40 | 10 |
科普类图书 | 30 | 200 | 30 |
其他图书 | 20 | 10 | 60 |
(1)根据统计数据估计文学类图书分类正确的概率
;
(2)根据统计数据估计图书分类错误的概率
;
(3)假设文学类图书在“文学类专栏”、“科普类专栏”、“其他类专栏”的数目分别为
,
,
,其中
,
,
,当
,
,
的方差
最大时,求
,
的值,并求出此时方差
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为正方形,
底面
,
,
为线段
的中点,若
为线段
上的动点(不含
).
![]()
(1)平面
与平面
是否互相垂直?如果是,请证明;如果不是,请说明理由;
(2)求二面角
的余弦值的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=
,O为AC与BD的交点,E为棱PB上一点.
![]()
(1)证明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,求三棱锥P-EAD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有五个命题:
①函数
的最小正周期是
;
②终边在
轴上的角的集合是
;
③在同一坐标系中,函数
的图象和函数
的图象有三个公共点;
④把函数
的图象向右平移
个单位得到
的图象;
⑤函数
在
上是减函数;
其中真命题的序号是( )
A.①②⑤B.①④C.③⑤D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年1月1日新修订的个税法正式实施,规定:公民全月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额.此项税款按下表分段累计计算(预扣):
全月应缴纳所得额 | 税率 |
不超过3000元的部分 |
|
超过3000元至12000元的部分 |
|
超过12000元至25000元的部分 |
|
国家在实施新个税时,考虑到纳税人的实际情况,实施了《个人所得税税前专项附加扣税暂行办法》,具体如下表:
项目 | 每月税前抵扣金额(元) | 说明 |
子女教育 | 1000 | 一年按12月计算,可扣12000元 |
继续教育 | 400 | 一年可扣除4800元,若是进行技能职业教育或者专业技术职业资格教育一年可扣除3600元 |
大病医疗 | 5000 | 一年最高抵扣金额为60000元 |
住房贷款利息 | 1000 | 一年可扣除12000元,若夫妻双方在同一城市工作,可以选择一方来扣除 |
住房租金 | 1500/1000/800 | 扣除金额需要根据城市而定 |
2000 | 一年可扣除24000元,若不是独生子女,子女平均扣除.赡养老人年龄需要在60周岁及以上 |
老李本人为独生子女,家里有70岁的老人需要赡养,有一个女儿正读高三,他每月还需缴纳住房贷款2734元.若2019年11月老李工资,薪金所得为20000元,按照《个人所得税税前专项附加扣税暂行办法》,则老李应缴纳税款(预扣)为______元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数
,给出以下四个命题:(1)当
时,
单调递减且没有最值;(2)方程
一定有实数解;(3)如果方程
(
为常数)有解,则解得个数一定是偶数;(4)
是偶函数且有最小值.其中假命题的序号是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集为
,
,定义集合
的特征函数为
,对于
,
,给出下列四个结论:
(1)对任意
,有![]()
(2)对任意
,若
,则![]()
(3)对任意
,有![]()
(4)对任意
,有![]()
其中,正确的序号是_____
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的值域是
,有下列结论:①当
时,
; ②当
时,
;③当
时,
; ④当
时,
.其中结论正确的所有的序号是( ).
A.①②B.③④C.②③D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com