精英家教网 > 高中数学 > 题目详情
10.若不等式x2+ax+b<0的解集为{x|-1<x<2},则不等式bx2+ax+1<0的解集为$(-∞,-1)∪(\frac{1}{2},+∞)$.

分析 根据题意,由一元二次不等式与一元二次方程的关系可得-1和2是方程x2+ax+b=0的两个根,进而有(-1)+2=-a,(-1)×2=b,解可得a、b的值,即可得bx2+ax+1<0⇒-2x2-x+1<0⇒2x2+x-1>0,解该不等式可得答案.

解答 解:根据题意,不等式x2+ax+b>0的解集为{x|-1<x<2},则有-1和2是方程x2+ax+b=0的两个根,
则有(-1)+2=-a,(-1)×2=b,
解可得:a=-1,b=-2,
bx2+ax+1<0⇒-2x2-x+1<0⇒2x2+x-1>0,
解可得x<-1或x>$\frac{1}{2}$,
即不等式bx2+ax+1<0的解集为$(-∞,-1)∪(\frac{1}{2},+∞)$;
故答案为:$(-∞,-1)∪(\frac{1}{2},+∞)$.

点评 本题主要考查一元二次方程的根与系数的关系,一元二次不等式的应用,关键是求出a、b、c的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设复数z满足$\frac{1-i}{z}$=i+2,则 z=(  )
A.$\frac{1}{5}-\frac{3}{5}i$B.$-\frac{1}{5}+\frac{3}{5}i$C.-$\frac{3}{5}$+$\frac{3}{5}$iD.$\frac{3}{5}$-$\frac{3}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.祖暅原理:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.现有一个圆柱和一个长方体,它们的底面积相等,高也相等,若长方体的底面周长为8,圆柱的体积为16π,根据祖暅原理,可得圆柱的高h的取值范围是(  )
A.(0,π]B.(0,4π]C.[π,+∞)D.[4π,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知p:4+2=5,q:3≥2,则下列判断中,错误的是(  )
A.p或q为真,非q为假B.p或q为真,非p为真
C.p且q为假,非p为假D.p且q为假,p或q为真

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x<0}\\{{e}^{x},x≥0}\end{array}\right.$,则f(0)+f(-3)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知线段AM的端点A的坐标是(3,0),端点M在圆C:x2+y2=4上.
(1)当直线AM与圆C相切时,求直线AM的方程;
(2)若动点P满足$\overrightarrow{AP}$=2$\overrightarrow{MP}$,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知m∈R,且(m+mi)6=-64i,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.利用计算机在区间($\frac{1}{3}$,2)内产生随机数a,则不等式ln(3a-1)<0成立的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法错误的是(  )
A.命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”
B.如果命题“¬p”与命题“p∨q”都是真命题,则命题q一定是真命题
C.若命题:?x0∈R,${x_0}^2-{x_0}+1<0$,则¬p:?x∈R,x2-x+1≥0
D.“$sinθ=\frac{1}{2}$”是“$θ=\frac{π}{6}$”的充分不必要条件

查看答案和解析>>

同步练习册答案