精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,长轴长为

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆交于两点,坐标原点在以为直径的圆上,点.试求点的轨迹方程.

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)根据离心率得定义,长轴的定义,以及abc的关系即可求出椭圆得标准方程;

(Ⅱ)设出AB点的坐标,直线l方程,再令直线l方程与椭圆方程联立,求出,根据且OAOBO为坐标原点),OHABH点.用参数表示H点坐标,把参数消掉,即可得到点H的轨迹方程.

(Ⅰ)由题意知

故椭圆的方程为

(Ⅱ)设

⑴若轴,可设,因,则

,得,即

轴,可设,同理可得

⑵当直线的斜率存在且不为0时,设

,消去

,得

,即(*).

,可知直线的方程为

联立方程组,得(记为②).

代入(*)式,化简得

综合⑴⑵,可知点的轨迹方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)设在区间上的最大值;

(3)证明:对不等式成立.为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求ab的值;

2)判断函数的单调性,并用定义证明;

3)当时,恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点MN,过点Mx轴的垂线分别与直线OPON交于点AB,其中O为原点.

(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;

(Ⅱ)求证:A为线段BM的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知成等差数列,点在直线上的射影为,点在直线上,则线段长度的最小值是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学组织了一次高二文科学生数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.

(Ⅰ)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?

(Ⅱ)在(Ⅰ)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意任取2人,求至少有一名男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数.

1)求实数的值;

2)若,对任意恒成立,求实数取值范围;

3)设,,问是否存在实数使函数上的最大值为?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司需要对所生产的三种产品进行检测,三种产品数量(单位:件)如下表所示:

产品

A

B

C

数量(件)

180

270

90

采用分层抽样的方法从以上产品中共抽取6.

1)求分别抽取三种产品的件数;

2)将抽取的6件产品按种类编号,分别记为现从这6件产品中随机抽取2.

(ⅰ)用所给编号列出所有可能的结果;

(ⅱ)求这两件产品来自不同种类的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为 为参数).以坐标原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.

(1)当时,求曲线上的点到直线的距离的最大值;

(2)若曲线上的所有点都在直线的下方,求实数的取值范围.

查看答案和解析>>

同步练习册答案