【题目】某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间
内)中,按照5%的比例进行分层抽样,统计结果按
,
,
,
,
分组,整理如下图:
![]()
(Ⅰ)写出频率分布直方图(图乙)中
的值;记所抽取样本中甲种酸奶与乙种酸奶日销售量的方差分别为
,
,试比较
与
的大小(只需写出结论);
(Ⅱ)从甲种酸奶日销售量在区间
的数据样本中抽取3个,记在
内的数据个数为
,求
的分布列;
(Ⅲ)估计1200个日销售量数据中,数据在区间
中的个数.
【答案】(Ⅰ)
,
;(Ⅱ)见解析;(Ⅲ)160个.
【解析】试题分析:
(1)利用概率为1求得
的值,然后比较
的大小即可;
(2)首先确定
所有可能的取值,然后利用超几何分布概率公式求解概率,最后写出分布列即可即可
(3)分析所给数据,利用频率近似代替概率,然后利用古典概型相关结论即可求得最终结果.
试题解析:
(Ⅰ)由图(乙)知,
解得
,
.
(Ⅱ)
的所有可能取值1,2,3.
则
,
,
,
其分布列如下:
| 1 | 2 | 3 |
|
|
|
|
(Ⅲ)由图(甲)知,甲种酸奶的数据共抽取
个,
其中有4个数据在区间
内,
又因为分层抽样共抽取了
个数据,
乙种酸奶的数据共抽取
个,
由(Ⅰ)知,乙种酸奶的日销售量数据在区间
内的频率为0.1,
故乙种酸奶的日销售量数据在区间
内有
个.
故抽取的60个数据,共有
个数据在区间
内.
所以,在1200个数据中,在区间
内的数据有160个.
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若
,求曲线
在点
处的切线;
(2)若函数
在其定义域内为增函数,求正实数
的取值范围;
(3)设函数
,若在
上至少存在一点
,使得
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌手机销售商今年1,2,3月份的销售量分别是1万部,1.2万部,1.3万部,为估计以后每个月的销售量,以这三个月的销售为依据,用一个函数模拟该品牌手机的销售量y(单位:万部)与月份x之间的关系,现从二次函数
或函数
中选用一个效果好的函数行模拟,如果4月份的销售量为1.37万件,则5月份的销售量为__________万件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
满足下列条件:在定义域内存在
,使得
成立,则称函数
具有性质
;反之,若
不存在,则称函数
不具有性质
.
(Ⅰ)证明:函数
具有性质
,并求出对应的
的值;
(Ⅱ)试分别探究形如①
(
)、②
(
且
)、③
(
且
)的函数,是否一定具有性质
?并加以证明.
(Ⅲ)已知函数
具有性质
,求
的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】编号为A,B,C,D,E的5个小球放在如图所示的5个盒子里,要求每个盒子只能放1个小球,且A球不能放在1,2号盒子里,B球必须放在与A球相邻的盒子中,求不同的放法有多少种?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某校新、老校区之间开车单程所需时间为
,
只与道路畅通状况有关,对其容量为
的样本进行统计,结果如图:
| 25 | 30 | 35 | 40 |
频数(次) | 20 | 30 | 40 | 10 |
(1)求
的分布列与数学期望
;
(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com