精英家教网 > 高中数学 > 题目详情
已知a,b,c是实数,下列命题是真命题的有(  )个
①“a>b”是“a2>b2”的充分条件;
②“a>b”是“a2>b2”的必要条件;
③“a>b”是“ac2>bc2”的充分条件;
④“a>b”是“|a|>|b|”的充要条件.
A、0B、1C、2D、3
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据不等式之间的关系,结合充分条件和必要条件的定义分别进行判断即可得到结论.
解答: 解:①若a=1,b=-1,则a>b,但a2>b2,不成立,故①错误;
②若a=-2,b=-1,满足a2>b2,但a>b不成立,故②错误;
③当c=0时,若a>b,则ac2>bc2,不成立,故③错误;
④若a=1,b=-1,则a>b,但|a|>|b|,不成立,故④错误.
故选:A
点评:本题主要考查充分条件和必要条件的判断,根据不等式之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下表提供了某厂节能降耗技术改进后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
x3456
y2.5344.5
(1)请根据上表提供的数据,用最小二乘法求出y关于x的回归方程
y
=
b
x+
a

(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)计算回归系数
a
b
.公式为
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知S是△ABC所在平面外一点,∠ASC=90°,∠ASB=∠BSC=60°,且SA=SB=SC.
(1)求证:平面SAC⊥平面ABC;
(2)求二面角B-AS-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m>0,命题P:定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex,且2f(x)<ex+m对任意x∈[ln
1
2
,2]恒成立;命题Q:函数y=logmx在其定义域上为减函数,若“P或Q”为真命题,“P且Q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是(  )
A、若m∥α,n⊥β且α⊥β,则m⊥n
B、若α⊥β,m∥n且 n⊥β,则m∥α
C、若m?α,n?β且m∥n,则α∥β
D、若m⊥α,n⊥β且m⊥n,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-1-ax(a∈R).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)当x∈(0,2]时,讨论函数F(x)=f(x)-xlnx零点的个数;
(Ⅲ)若g(x)=ln(ex-1)-lnx,当a=1时,求证:f[g(x)]<f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2+bx+c(b、c∈R)在x=-1处取得极小值m-2(m∈R且m≠0),设φ(x)=
f(x)
x2
,当x∈[-4,-2]时,函数φ(x)的最大值为
m2
32
+1,则实数m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=xlnx,g(x)=x2-1.
(1)令h(x)=f(x)-g(x),求h(x)的单调区间;
(2)若当x≥1时,f(x)-mg(x)≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若acosA=bcosB,则△ABC的形状一定是(  )
A、等腰直角三角形
B、直角三角形
C、等腰三角形
D、等腰或直角三角形

查看答案和解析>>

同步练习册答案