精英家教网 > 高中数学 > 题目详情
11.设i是虚数单位,复数z=(1-2i)(i+4),则|z|=(  )
A.$\sqrt{65}$B.5$\sqrt{3}$C.$\sqrt{85}$D.$\sqrt{95}$

分析 利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.

解答 解:由z=(1-2i)(i+4)=i+4-2i2-8i=6-7i,
得$|z|=\sqrt{36+49}=\sqrt{85}$.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列和第4列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号是04.
78166572080263160702436997281198
32049234491582003623486969387481

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+$\frac{a}{x}$-1,a∈R
(I)若曲线y=f(x)在点(1,f(1))处的切线与直线x-y+1=0垂直,求函数的极值;
(II)当a>0时,若函数f(x)在区间[1,3]上的最小值为$\frac{1}{3}$,求a的值;
(III)讨论函数g(x)=f′(x)-$\frac{x}{3}$零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.我国古代的劳动人民曾创造了灿烂的中华文明,戍边的官兵通过在烽火台上举火向国内报告,烽火台上点火表示数字1,不点火表示数字0,这蕴含了进位制的思想.下面程序框图的算法思路就源于我国古代戍边官兵的“烽火传信”.执行该程序框图,若输入a=1234,k=5,n=4则输出的b=(  )
A.26B.194C.569D.819

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.△ABC的内角A,B,C的对边分别为a,b,c,已知$\sqrt{3}$acosC-csinA=$\sqrt{3}$b.
(Ⅰ)求A;
(Ⅱ)若a=7,△ABC的周长为15,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=sin(x+φ)在x=$\frac{π}{4}$时取得最小值,则函数y=f($\frac{3π}{4}$-x)的一个单调递增区间是(  )
A.(-$\frac{π}{2}$,-$\frac{π}{4}$)B.(0,$\frac{π}{2}$)C.($\frac{π}{2}$,π)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设如果执行下面的程序框图,那么输出的S=(  )
A.6B.120C.12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知曲线f(x)=x3+x2+x+3在x=-1处的切线与抛物线y=2px2相切,则抛物线的准线方程为(  )
A.$x=\frac{1}{16}$B.x=1C.y=-1D.y=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD,PA=AB,E为PD中点.
(1)求证:直线PD⊥平面AEB;
(2)若直线PC交平面AEB于点F,求直线BF与平面PCD所成的角的正弦值.

查看答案和解析>>

同步练习册答案