精英家教网 > 高中数学 > 题目详情
3.复数z=$\frac{(1-i)(4-i)}{1+i}$的共轭复数的虚部为(  )
A.-4iB.-4C.4iD.4

分析 利用复数代数形式的乘除运算化简,求出$\overline{z}$得答案.

解答 解:∵z=$\frac{(1-i)(4-i)}{1+i}$=$\frac{(1-i)^{2}(4-i)}{(1+i)(1-i)}=\frac{-2i(4-i)}{2}=-1-4i$,
∴$\overline{z}=-1+4i$,
∴复数z=$\frac{(1-i)(4-i)}{1+i}$的共轭复数的虚部为4.
故选:D.

点评 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.鸡年春节期间,国人发微信拜年已成为一种时尚,若小李的40名同事中,给其发微信拜年的概率为1,0.8,0.5,0的人数分别为8,15,14,3(人),则通常情况下,小李应收到同事的拜年的微信数为(  )
A.27B.37C.38D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x-2lnx-$\frac{a}{x}$+1,g(x)=ex(2lnx-x)+b.
(1)若函数f(x)在定义域上是增函数,求a的取值范围;
(2)若g(x)=0有解,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.点M(x,y)在圆x2+(y-2)2=1上运动,则$\frac{xy}{{4{x^2}+{y^2}}}$的取值范围是(  )
A.(-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞)B.(-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞)∪{0}C.$[{-\frac{1}{4},0})∪({0,\frac{1}{4}}]$D.$[{-\frac{1}{4},\frac{1}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=lnx-\frac{{m({x+n})}}{x+1}$(m>0,n∈R)在(0,+∞)上不单调,若m-n>λ恒成立,则实数λ的取值范围为(  )
A.[3,+∞)B.[4,+∞)C.(-∞,3]D.(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.对任意的正数x,都存在两个不同的正数y,使x2(lny-lnx)-ay2=0成立,则实数a的取值范围为(  )
A.(0,$\frac{1}{2e}$)B.(-∞,$\frac{1}{2e}$)C.($\frac{1}{2e}$,+∞)D.($\frac{1}{2e}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合M={x|y=lg(x-2),N={x|x≥a},若集合M∩N=N,则实数a的取值范围是(  )
A.(2,+∞)B.[2,+∞)C.(-∞,0)D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,正方体ABCD-A1B1C1D1中,E,F,H分别为A1B1,B1C1,CC1的中点.
(Ⅰ)证明:BE⊥AH;
(Ⅱ)在棱D1C1上是否存在一点G,使得AG∥平面BEF?若存在,求出点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“若x=1,则x2-3x+2=0”的逆否命题是(  )
A.若x≠1,则x2-3x+2≠0B.若x2-3x+2=0,则x=1
C.若x2-3x+2=0,则x≠1D.若x2-3x+2≠0,则x≠1

查看答案和解析>>

同步练习册答案