精英家教网 > 高中数学 > 题目详情
11.如图,已知四棱锥P-ABCD是边长为1的正方形,PB=PD=$\sqrt{5}$,PC=2,E是侧棱PC上的动点.
(Ⅰ)求证:不论点E在何位置,都有BD⊥AE;
(Ⅱ)若PA∥平面BDE,求直线AE与平面BDE所成角的正弦值.
(Ⅲ)在(Ⅱ)的条件下,求二面角D-AE-B的大小.

分析 (Ⅰ)以点C为原点,CD,CB,CP,所在直线为x,y,z轴建立空间直角坐标系,则A(1,1,0),B(0,1,0),D(1,0,0),P90,0,2,设E(0,0,a),由$\overrightarrow{BD}•\overrightarrow{AE}=0$知DB⊥AE.
(Ⅱ)求出设平面DBE的法向量,设直线AE与平面BDE所成角的为θ,sinθ=|cos<$\overrightarrow{AE},\overrightarrow{{n}_{1}}$>|=$\frac{1}{\sqrt{3}×\sqrt{3}}=\frac{1}{3}$.即可.
(Ⅲ)求出平面ADE和平面ABE的法向量,利用向量夹角公式求解.

解答 解:(Ⅰ)∵在△PBC中,PB=$\sqrt{5}$,PC=2,BC=1,
∴PC2+BC2=PB2.∴PC⊥BC.
同理PC⊥DC.∴PC⊥面ABCD.
如图以点C为原点,CD,CB,CP,所在直线为x,y,z轴建立空间直角坐标系,
则A(1,1,0),B(0,1,0),D(1,0,0),P90,0,2)∴$\overrightarrow{BD}=(1,-1,0)$.
设E(0,0,a),则$\overrightarrow{AE}=(-1,-1,a)$,
∵$\overrightarrow{BD}•\overrightarrow{AE}=0$,∴DB⊥AE.
(Ⅱ)$\overrightarrow{BD}=(1,-1,0)$,$\overrightarrow{BE}=(0,-1,a),\overrightarrow{PA}=(1,1,-2)$.
设平面DBE的法向量$\overrightarrow{{n}_{1}}=({x}_{1},{y}_{1},{z}_{1})$
由$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{BD}={x}_{1}-{y}_{1}=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{BE}=-{y}_{1}+a{z}_{1}=0}\end{array}\right.$,可取$\overrightarrow{{n}_{1}}=(1,1,\frac{1}{a})$.
∵PA∥面BDE,∴$PA⊥\overrightarrow{{n}_{1}}$,即$\overrightarrow{PA}•\overrightarrow{{n}_{1}}=2-\frac{2}{a}=0$,解得a=1.
∴$\overrightarrow{{n}_{1}}=(1,1,1),\overrightarrow{AE}=(-1,-1,1)$,
设直线AE与平面BDE所成角的为θ
sinθ=|cos<$\overrightarrow{AE},\overrightarrow{{n}_{1}}$>|=$\frac{1}{\sqrt{3}×\sqrt{3}}=\frac{1}{3}$.
直线AE与平面BDE所成角的正弦值为$\frac{1}{3}$..
(Ⅲ)$\overrightarrow{DA}=(0,1,0),\overrightarrow{DE}=(-1,0,1)$,$\overrightarrow{BA}=(1,0,0)$,$\overrightarrow{BE}=(0,-1,1)$.
设平面ADE和平面ABE的法向量分别为$\overrightarrow{{n}_{2}}=({x}_{2},{y}_{2},{z}_{2}),\overrightarrow{{n}_{3}}=({x}_{3},{y}_{3},{z}_{3})$,
由$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{DA}={y}_{2}=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{DE}=-{x}_{2}+{z}_{2}=0}\end{array}\right.$,可取$\overrightarrow{{n}_{2}}=(1,0,1)$,
同理可得$\overrightarrow{{n}_{3}}=(0,1,1)$.
设二面角D-AE-B的大小为β,|cosβ|=$\frac{1}{2}$,
由图可知β为钝角,二面角D-AE-B的大小为$\frac{2π}{3}$.

点评 本题考查了线线垂直的判定,向量法求解空间角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=ax2+bx+c(a>0)有两个零点1,2,数列{xn}满足xn+1=xn-$\frac{f({x}_{n})}{f′({x}_{n})}$,设an=ln$\frac{{x}_{n}-2}{{x}_{n}-1}$,若a1=$\frac{1}{2}$,xn>2,则数列{an}的通项公式an=2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果集合A={x∈Z|-2≤x<1},B={-1,0,1},那么A∩B=(  )
A.{-2,-1,0,1}B.{-1,0,1}C.{0,1}D.{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在复平面内,复数z=1-2i对应的点到原点的距离是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2,若以A1A2为直径的圆内切于菱形F1B1F2B2,则双曲线的离心率是(  )
A.$\sqrt{5}$-1B.$\frac{3+\sqrt{5}}{2}$C.$\frac{\sqrt{5}+1}{2}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=lnx-ax(a∈R).
(Ⅰ)若直线y=3x-1是函数f(x)图象的一条切线,求实数a的值;
(Ⅱ)若函数f(x)在[1,e2]上的最大值为1-ae(e为自然对数的底数),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F2(1,0),点H(2,$\frac{2\sqrt{10}}{3}$)在椭圆上
(Ⅰ)求椭圆的方程;
(Ⅱ)第一象限内一点M在圆C:x2+y2=b2上,过M作圆C的切线交椭圆于P,Q两点.问:△PF2Q的周长是否为定值,若是,求出定值,不是的话说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$过点A(1,1),它的焦点F在其渐近线上的射影记为M,且△OFM(O为原点)的面积为$\frac{{\sqrt{2}}}{4}$.
(Ⅰ)求双曲线的方程;
(Ⅱ)过点A作双曲线的两条动弦AB,AC,设直线AB,直线AC的斜率分别为k1,k2,且(k1+1)(k2+1)=-1恒成立,证明:直线BC的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在等比数列{an}中,2a4=a6-a5,则公比q=2或-1.

查看答案和解析>>

同步练习册答案