【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.
(1)请分别求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;
(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:
日均派送单数 | 52 | 54 | 56 | 58 | 60 |
频数(天) | 20 | 30 | 20 | 20 | 10 |
回答下列问题:
①根据以上数据,设每名派送员的日薪为(单位:元),试分别求出这100天中甲、乙两种方案的日薪平均数及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.
(参考数据: , , , , , , , , )
【答案】(1);(2)见解析
【解析】试题分析:(1)甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元. 求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;
①、由表格可知,甲方案中,日薪为152元的有20天,日薪为154元的有30天,日薪为156元的有20天,日薪为158元的有20天,日薪为160元的有10天,由此可求出这100天中甲方案的日薪平均数及方差:同理可求出这100天中乙两种方案的日薪平均数及方差,
②不同的角度可以有不同的答案
试题解析:((1)甲方案中派送员日薪(单位:元)与送货单数的函数关系式为: ,
乙方案中派送员日薪(单位:元)与送单数的函数关系式为:
,
(2)①、由表格可知,甲方案中,日薪为152元的有20天,日薪为154元的有30天,日薪为156元的有20天,日薪为158元的有20天,日薪为160元的有10天,则
,
,
乙方案中,日薪为140元的有50天,日薪为152元的有20天,日薪为176元的有20天,日薪为200元的有10天,则
,
②、答案一:
由以上的计算可知,虽然,但两者相差不大,且远小于,即甲方案日薪收入波动相对较小,所以小明应选择甲方案.
答案二:
由以上的计算结果可以看出, ,即甲方案日薪平均数小于乙方案日薪平均数,所以小明应选择乙方案.
【题型】解答题
【结束】
20
【题目】已知椭圆: 的左、右焦点分别为, ,且离心率为, 为椭圆上任意一点,当时, 的面积为1.
(1)求椭圆的方程;
(2)已知点是椭圆上异于椭圆顶点的一点,延长直线, 分别与椭圆交于点, ,设直线的斜率为,直线的斜率为,求证: 为定值.
【答案】(1);(2)
【解析】试题分析:(1)设由题,由此求出,可得椭圆的方程;
(2)设, ,
当直线的斜率不存在时,可得;
当直线的斜率不存在时,同理可得.
当直线、的斜率存在时,,
设直线的方程为,则由消去通过运算可得
,同理可得,由此得到直线的斜率为,
直线的斜率为,进而可得.
试题解析:(1)设由题,
解得,则,
椭圆的方程为.
(2)设, ,
当直线的斜率不存在时,设,则,
直线的方程为代入,可得,
, ,则,
直线的斜率为,直线的斜率为,
,
当直线的斜率不存在时,同理可得.
当直线、的斜率存在时,,
设直线的方程为,则由消去可得:
,
又,则,代入上述方程可得
,
,则
,
设直线的方程为,同理可得,
直线的斜率为,
直线的斜率为,
.
所以,直线与的斜率之积为定值,即.
科目:高中数学 来源: 题型:
【题目】已知由实数构成的等比数列{an}满足a1=2,a1+ a3+ a5=42.
(I)求数列{an}的通项公式;
(II)求a2+ a4+ a6+…+ a2n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一个以A1B1C1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC,已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=3,CC1=2,求:
(1)该几何体的体积.
(2)截面ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, ,在处的切线方程为.
(1)求, ;
(2)若,证明: .
【答案】(1), ;(2)见解析
【解析】试题分析:(1)求出函数的导数,得到关于 的方程组,解出即可;
(2)由(1)可知, ,
由,可得,令, 利用导数研究其单调性可得
,
从而证明.
试题解析:((1)由题意,所以,
又,所以,
若,则,与矛盾,故, .
(2)由(1)可知, ,
由,可得,
令,
,
令
当时, , 单调递减,且;
当时, , 单调递增;且,
所以在上当单调递减,在上单调递增,且,
故,
故.
【点睛】本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.
【题型】解答题
【结束】
22
【题目】在平面直角坐标系中,曲线的参数方程为(, 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;
(1)求曲线的极坐标方程;
(2)在曲线上取两点, 与原点构成,且满足,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过椭圆的右焦点F作直线交椭圆于M、N两点,H为线段MN的中点,且OH的斜率为,设点
求该椭圆的方程;
若点P是椭圆上的动点,求线段PA的中点G的轨迹方程;
过原点的直线交椭圆于B、C两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体ABCD-A1B1C1D1的棱长为4,E为棱CC1的中点,点M在正方形BCC1B1内运动,且直线AM∥平面A1DE,则动点M的轨迹长度为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com