【题目】过椭圆
的右焦点F作直线
交椭圆于M、N两点,H为线段MN的中点,且OH的斜率为
,设点![]()
求该椭圆的方程;
若点P是椭圆上的动点,求线段PA的中点G的轨迹方程;
过原点的直线交椭圆于B、C两点,求
面积的最大值.
【答案】(1)
;(2)
,(3)最大值
.
【解析】
结合点差法和直线的斜率,以及OH的斜率为
,可得
,再根据右焦点F在直线
上,求出c,即可求出椭圆的方程;
利用转移法解得G的轨迹方程;
联立直线的方程与椭圆方程,利用弦长公式求出CB,再根据点到直线距离公式得A到CB的距离,根据三角形的面积得函数解析式,根据基本不等式求出最大值.
解:
设
,
则
,两式相减可得,
,
即
,
![]()
直线
交椭圆于M、N两点,H为线段MN的中点,且OH的斜率为
,
,
,
,![]()
右焦点F作在直线
上,
令
,可得
,
,
,
,
由
,解得
,
,
椭圆方程为
;
设
,
,则有
,即
,代入为
中,
得
,
故线段PA的中点G的轨迹方程为
,
当直线BC垂直x轴时,此时
,点A到直线BC的距离
,则
,
当直线BC的斜率为零时,此时
,点A到直线BC的距离
,则
,
当直线BC的斜率存在且不为零时,设直线BC的方程为
,
联立方程组可得
,消y整理可得
,
解得
,
,
则
,
点A到直线BC的距离
,
![]()
,
,
当且仅当
时,即
,
取最大值,最大值为
,
综上所述
面积的最大值
.
科目:高中数学 来源: 题型:
【题目】在以下命题中,不正确的个数为( )
①
是
,b共线的充要条件;②若
∥
,则存在唯一的实数λ,使
=λ
;③对空间任意一点O和不共线的三点A,B,C,若
=2
-2
-
,则P,A,B,C四点共面;④若{
,
,
}为空间的一个基底,则{
+
,
+
,
+
}构成空间的另一个基底;⑤ |(
·
)·
|=|
|·|
|·|
|.
A. 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,直线
交椭圆
于
、
两点,椭圆
的右顶点为
,且满足
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
交于不同两点
、
,且定点
满足
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.
(1)请分别求出甲、乙两种薪酬方案中日薪
(单位:元)与送货单数
的函数关系式;
(2)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:
日均派送单数 | 52 | 54 | 56 | 58 | 60 |
频数(天) | 20 | 30 | 20 | 20 | 10 |
回答下列问题:
①根据以上数据,设每名派送员的日薪为
(单位:元),试分别求出这100天中甲、乙两种方案的日薪
平均数及方差;
②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.
(参考数据:
,
,
,
,
,
,
,
,
)
【答案】(1)
;(2)见解析
【解析】试题分析:(1)甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元. 求出甲、乙两种薪酬方案中日薪
(单位:元)与送货单数
的函数关系式;
①、由表格可知,甲方案中,日薪为152元的有20天,日薪为154元的有30天,日薪为156元的有20天,日薪为158元的有20天,日薪为160元的有10天,由此可求出这100天中甲方案的日薪
平均数及方差:同理可求出这100天中乙两种方案的日薪
平均数及方差,
②不同的角度可以有不同的答案
试题解析:((1)甲方案中派送员日薪
(单位:元)与送货单数
的函数关系式为:
,
乙方案中派送员日薪
(单位:元)与送单数
的函数关系式为:
,
(2)①、由表格可知,甲方案中,日薪为152元的有20天,日薪为154元的有30天,日薪为156元的有20天,日薪为158元的有20天,日薪为160元的有10天,则
,
,
乙方案中,日薪为140元的有50天,日薪为152元的有20天,日薪为176元的有20天,日薪为200元的有10天,则
,
![]()
②、答案一:
由以上的计算可知,虽然
,但两者相差不大,且
远小于
,即甲方案日薪收入波动相对较小,所以小明应选择甲方案.
答案二:
由以上的计算结果可以看出,
,即甲方案日薪平均数小于乙方案日薪平均数,所以小明应选择乙方案.
【题型】解答题
【结束】
20
【题目】已知椭圆
:
的左、右焦点分别为
,
,且离心率为
,
为椭圆上任意一点,当
时,
的面积为1.
(1)求椭圆
的方程;
(2)已知点
是椭圆
上异于椭圆顶点的一点,延长直线
,
分别与椭圆交于点
,
,设直线
的斜率为
,直线
的斜率为
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汕尾市基础教育处为调查在校中学生每天放学后的自学时间情况,在本市的所有中学生中随机抽取了120名学生进行调查,现将日均自学时间小于1小时的学生称为“自学不足”者
根据调查结果统计后,得到如下
列联表,已知在调查对象中随机抽取1人,为“自学不足”的概率为
.
非自学不足 | 自学不足 | 合计 | |
配有智能手机 | 30 | ||
没有智能手机 | 10 | ||
合计 |
请完成上面的列联表;
根据列联表的数据,能否有
的把握认为“自学不足”与“配有智能手机”有关?
附表及公式:
,其中![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
的部分图象大致是( )
A.
B. ![]()
C.
D. ![]()
【答案】D
【解析】当
时,
,所以去掉A,B;
因为
,所以
,因此去掉C,选D.
点睛:有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.
【题型】单选题
【结束】
8
【题目】《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的表面积为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
三个内角
所对的边分别是
,若
.
(1)求角
;
(2)若
的外接圆半径为2,求
周长的最大值.
【答案】(1)
;(2)
.
【解析】试题分析:(1)由正弦定理将边角关系化为边的关系
,再根据余弦定理求角
,(2)先根据正弦定理求边,用角表示周长,根据两角和正弦公式以及配角公式化为基本三角函数,最后根据正弦函数性质求最大值.
试题解析:(1)由正弦定理得
,
∴
,∴
,即![]()
因为
,则
.
(2)由正弦定理![]()
∴
,
,
,
∴周长![]()
![]()
![]()
![]()
![]()
![]()
∵
,∴![]()
∴当
即
时![]()
∴当
时,
周长的最大值为
.
【题型】解答题
【结束】
18
【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:
![]()
其中:
,
, ![]()
![]()
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;(
的值精确到0.01)
(3)若规定,一个人的收缩压为标准值的0.9~1.06倍,则为血压正常人群;收缩压为标准值的1.06~1.12倍,则为轻度高血压人群;收缩压为标准值的1.12~1.20倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg的70岁的老人,属于哪类人群?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点
是
所在平面内一点,下列说法正确的是( )
A.若
,则
的形状为等边三角形
B.若
,则点
是边
的中点
C.过
任作一条直线,再分别过顶点
作
的垂线,垂足分别为
,若
恒成立,则点
是
的垂心
D.若
则点
在边
的延长线上
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com