精英家教网 > 高中数学 > 题目详情
如图,直线经过⊙上的点,并且交直线,连接

(I)求证:直线是⊙的切线;
(II)若的半径为,求的长.
(1)见解析 (2)OA=5
(1)要想证AB是⊙O的切线,只要连接OC,求证∠ACO=90°即可;
(2)先由三角形判定定理可知,△BCD∽△BEC,得BD与BC的比例关系,最后由切割线定理列出方程求出OA的长
解:(1)如图,连接OC,∵OA=OB,CA=CB,∴OC⊥AB.∴AB是⊙O的切线;
(2)∵ED是直径,∴∠ECD=90°∴∠E+∠EDC=90°
又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E,又∵∠CBD=∠EBC,∴△BCD∽△BEC.
∴BC BE ="BD" BC ,∴BC2=BD•BE,∵tan∠CED="1" 2 ,∴CD :EC =1: 2 .
∵△BCD∽△BEC,∴BD :BC =CD: EC ="1" :2 ,设BD=x,BC=2x.又BC2=BD•BE,∴(2x)2=x•(x+6),解得x1=0,x2=2,∵BD=x>0,∴BD=2,∴OA=OB=BD+OD=3+2=5.(10分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)选修4-1:几何证明选讲
如图,AB、CD是圆的两条平行弦,BE//AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.
(I)求AC的长;
(II)求证:BE=EF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)选修4—1: 几何证明选讲
如图,已知与圆相切于点,经过点的割线交圆于点的平分线分别交于点

(1)证明:
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.选修4-1:几何证明选讲:
如图,在Rt△ABC中,, BE平分∠ABC交AC于点E, 点D在AB上,

(Ⅰ)求证:AC是△BDE的外接圆的切线;
(Ⅱ)若,求EC的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,过半径为4的⊙O上的一点A引半径为3的⊙O′的切线,切点为B,若⊙O与⊙O′内切于点M,连接AM与⊙O′交于c点,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,点ABC都在⊙O上,过点C的切线交AB的延长线于点D,若AB=5,BC=3,CD=6,则线段AC的长为 ( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设C为线段AB的中点,BCDE是以BC为一边的正方形,以B为圆心,BD为半径的圆与AB及其延长线相交于点HK
(Ⅰ)求证:HC·CKBC2
(Ⅱ)若圆的半径等于2,求AH·AK的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,圆O的直径为6,C为圆周上一点.BC=3,过C作圆的切线l.过A作l的垂线AD,垂足为D,则线段CD的长为____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


(3).(选修4—1 几何证明选讲)如图,已知是圆的切线,为切点,过做圆的一条割线交圆两点,为弦的中点,若圆心在∠的内部,则∠+∠的度数为:           

查看答案和解析>>

同步练习册答案