精英家教网 > 高中数学 > 题目详情
三棱锥P-ABC中,AP=AC,PB=2,将此三棱锥沿三条侧棱剪开,其展开图是一个直角梯形p1p2p3A,如图.
(1)求证:PB⊥AC
(2)求PB与面ABC所成角的大小.
(3)(只理科做)求三棱锥P-ABC外接球的面积.
(1)证明:由展开图知:P1B⊥P1A,P2B⊥P2C
∴BP⊥PC,BP⊥PA,∴BP⊥平面PAC
∵AC?平面PAC,∴PB⊥AC
(2)设PA=AC=AP3=x,P3C=y
作AE⊥CP3,则E为CP3的中点
∴x2-(
y
2
)
2
=16,且x=y+
y
2
,解得 x=3
2
,y=2
2

即PA=AC=3
2
,PC=2
2

作PO⊥平面ABC,连接BO交AC于D,连接PD
∴∠PBO为PB与面ABC所成角
∵BP⊥平面PAC,易证AC⊥BD,AC⊥PD
在△PAC中,
1
2
×2
2
×4=
1
2
×3
2
×PD
∴PD=
8
3

∴tan∠PBO=
PD
PB
=
4
3

∴∠PBO=arctan
4
3

(3)设△PAC的外接圆圆心为Q,球心为O.连接PQ并延长交球面于M,连BM,OQ
∵BP⊥平面PAC,OQ⊥平面PAC,∴BPOQ
∴平面BPM是球的一个大圆
在△BPM中,BP=2,PM=
9
2

∴BM=
22+(
9
2
)
2
=
97
2
,∴球半径R=
97
4

∴球的表面积S=4πR2=
97π
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

长方体ABCD-A1B1C1D1中AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为(  )
A.
10
10
B.
30
10
C.
2
15
10
D.
3
10
10

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知在正四棱柱ABCD-A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,E为C1C上的点,且CE=1,
(1)求证:A1C⊥平面BDE;
(2)求A1B与平面BDE所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知斜三棱柱(侧棱不垂直于底面)ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,BC=2,AC=2
3
,AB=2
2
AA1=A1C=
6

(Ⅰ)设AC的中点为D,证明A1D⊥底面ABC;
(Ⅱ)求异面直线A1C与AB成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知球O的表面积为4π,A、B、C三点都在球面上,且任意两点间的球面距离为
π
2
,则OA与平面ABC所成角的正切值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方体ABCD-A1B1C1D1的棱长为2,M,N分别为AA1、BB1的中点.
求:(1)CM与D1N所成角的余弦值.
(2)D1N与平面MBC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在三棱柱ABC-A1B1C1中,AC=BC=CC1∠ACB=90°,CC1⊥平面ABC,则AC1与平面ABB1A1所成角的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在长方体ABCD-A1B1C1D1中,AB=BC=2AA1,则BC1与平面BB1D1D所成角的正弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角α-l-β的大小为120°,点B,C在棱l上,A∈α,D∈β,AB⊥l,CD⊥l,AB=2,BC=1,CD=3,则AD的长为______.

查看答案和解析>>

同步练习册答案