精英家教网 > 高中数学 > 题目详情
9.已知角θ的终边过点(2,3),则tan($\frac{11π}{4}$+θ)=(  )
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.-5D.5

分析 利用任意角的三角函数的定义求得tanθ的值,再利用两角差的正切公式求得tan($\frac{11π}{4}$+θ)的值.

解答 解:∵角θ的终边过点(2,3),∴tanθ=$\frac{3}{2}$,
则tan($\frac{11π}{4}$+θ)=tan(θ-$\frac{π}{4}$+3π)=tan(θ-$\frac{π}{4}$)=$\frac{tanθ-1}{1+tanθ}$=$\frac{\frac{3}{2}-1}{1+\frac{3}{2}}$=$\frac{1}{5}$,
故选:B.

点评 本题主要考查任意角的三角函数的定义,两角差的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图所示,在正三棱柱ABC-A1B1C1中,点D在边BC上,AD⊥C1D.
(1)求证:平面ADC1⊥平面BCC1B1
(2)如果点E是B1C1的中点,求证:AE∥平面ADC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
(Ⅰ)设$a=2,\;b=\frac{1}{2}$,求方程f(x)=2的根;
(Ⅱ)设$a=\frac{1}{3},\;b≥3$,函数g(x)=f(x)-2,已知b>3时存在x0∈(-1,0)使得g(x0)<0.若g(x)=0有且只有一个零点,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设Sn是数列{an}的前n项和,${a_1}=1,S_n^2={a_n}({S_n}-\frac{1}{2})(n≥2)$
(1)求证数列$\left\{{\frac{1}{S_n}}\right\}$是等差数列,并求Sn
(2)设bn=$\frac{S_n}{2n+3},{T_n}={b_1}+{b_2}+{b_3}+…+{b_n}$,求Tn
(3)若对任意正整数n不等式(4n2-4n+10)Sn>(-1)n•a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知两组数A:x1,x2,x3,x4,x5,x6,x7,B:y1,y2,y3,y4,y5,y6,y7,其中yi=2xi+3,(i=1,2,3,4,5,6,7),A组数的平均数与方差分别记为$\overline{x}$,SA2,B组数的平均数与方差分别记为$\overline{y}$,SB2,则下面关系式正确的是(  )
A.$\overline{y}$=2$\overline{x}$+3,sB2=2sB2+3B.$\overline{y}$=2$\overline{x}$+3,sB2=4sA2
C.$\overline{y}$=2$\overline{x}$,sB2=4sA2D.$\overline{y}$=2$\overline{x}$,sB2=4sA2+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,所有棱长都为2的正三棱柱BCD-B′C′D′,四边形ABCD是菱形,其中E为BD的中点.
(1)求证:C′E∥面AB′D′;
(2)求面AB'D'与面ABD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,三个内角A,B,C成等差数列,则cos(A+C)的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,右焦点为F,上顶点为A,且△AOF的面积为$\frac{1}{2}$(O是坐标原点)
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是椭圆C上的一点,过P的直线l与以椭圆的短轴为直径的圆切于第一象限,切点为M,证明:|PF|+|PM|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如图,已知分数在100~110的学生数有21人.
(Ⅰ)求总人数N和分数在110~115分的人数n;
(Ⅱ)现准备从分数在110~115分的n名学生(女生占$\frac{1}{3}$)中任选2人,求其中恰好含有一名女生的概率;
(Ⅲ)为了分析某个学生的学习状态,对其下一阶段的学习提供指导性建议,对他前7次考试的数学成绩x(满分150分),物理成绩y进行分析,下面是该生7次考试的成绩.
数学888311792108100112
物理949110896104101106
已知该生的物理成绩y与数学成绩x是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为$\hat β=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\overline v)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}},\;\hat α=\overline v-\hat β\overline u$.

查看答案和解析>>

同步练习册答案