17£®ÉèSnÊÇÊýÁÐ{an}µÄǰnÏîºÍ£¬${a_1}=1£¬S_n^2={a_n}£¨{S_n}-\frac{1}{2}£©£¨n¡Ý2£©$
£¨1£©ÇóÖ¤ÊýÁÐ$\left\{{\frac{1}{S_n}}\right\}$ÊǵȲîÊýÁУ¬²¢ÇóSn£®
£¨2£©Éèbn=$\frac{S_n}{2n+3}£¬{T_n}={b_1}+{b_2}+{b_3}+¡­+{b_n}$£¬ÇóTn£®
£¨3£©Èô¶ÔÈÎÒâÕýÕûÊýn²»µÈʽ£¨4n2-4n+10£©Sn£¾£¨-1£©n•aºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©µ±n¡Ý2ʱ£¬an=Sn-Sn-1£¬ÍƵ¼³ö${S_n}{S_{n-1}}=\frac{1}{2}{S_n}-\frac{1}{2}{S_{n-1}}$£¬´Ó¶ø$\frac{1}{S_n}-\frac{1}{{{S_{n-1}}}}=2$£¬ÓÉ´ËÄÜÖ¤Ã÷$\{\frac{1}{S_n}\}$ÊǵȲîÊýÁУ¬´Ó¶øÄÜÇó³öSn£®
£¨2£©ÓÉ${b_n}=\frac{1}{£¨2n-1£©£¨2n+3£©}=\frac{1}{4}£¨\frac{1}{2n-1}-\frac{1}{2n+3}£©$£¬ÀûÓÃÁÑÏîÇóºÍ·¨ÄÜÇó³öTn£®
£¨3£©ÓÉ$£¨4{n^2}-4n+10£©•{S_n}=\frac{{4{n^2}-4n+10}}{2n-1}=\frac{{{{£¨2n-1£©}^2}+9}}{2n-1}$=$2n-1+\frac{9}{2n-1}$£¬·ÖnÎªÆæÊýºÍnΪżÊýÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£¬ÄÜÇó³öʵÊýaµÄȡֵ·¶Î§£®

½â´ð Ö¤Ã÷£º£¨1£©µ±n¡Ý2ʱ£¬an=Sn-Sn-1£¬
ÓÉÒÑÖªÓÐ${S_n}^2=£¨{S_n}-{S_{n-1}}£©£¨{S_n}-\frac{1}{2}£©$£¬
¼´${S_n}{S_{n-1}}=\frac{1}{2}{S_n}-\frac{1}{2}{S_{n-1}}$£¬
¡à$\frac{1}{S_n}-\frac{1}{{{S_{n-1}}}}=2$£¬¡­£¨3·Ö£©
¡ß$\frac{1}{{S}_{1}}$=$\frac{1}{{a}_{1}}$=1£¬¡à$\{\frac{1}{S_n}\}$ÊÇÊ×ÏîΪ1£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬
¡à$\frac{1}{{S}_{n}}=1+£¨n-1£©¡Á2$=2n-1£¬
¡à${S_n}=\frac{1}{2n-1}$¡­£¨4·Ö£©
½â£º£¨2£©¡ß${b_n}=\frac{1}{£¨2n-1£©£¨2n+3£©}=\frac{1}{4}£¨\frac{1}{2n-1}-\frac{1}{2n+3}£©$£¬
¡à${T_n}=\frac{1}{4}£¨1-\frac{1}{5}+\frac{1}{3}-\frac{1}{7}+\frac{1}{5}-\frac{1}{9}+\frac{1}{7}-\frac{1}{11}+¡­+\frac{1}{2n-3}-\frac{1}{2n+1}+\frac{1}{2n-1}-\frac{1}{2n+3}£©$
=$\frac{1}{4}£¨\frac{4}{3}-\frac{1}{2n+1}-\frac{1}{2n+3}£©$
=$\frac{1}{3}-\frac{1}{4}£¨\frac{1}{2n+1}+\frac{1}{2n+3}£©$£®¡­£¨8·Ö£©
£¨3£©¡ß$£¨4{n^2}-4n+10£©•{S_n}=\frac{{4{n^2}-4n+10}}{2n-1}=\frac{{{{£¨2n-1£©}^2}+9}}{2n-1}$=$2n-1+\frac{9}{2n-1}$£¬
¡àµ±nÎªÆæÊýʱ $-a£¼2n-1+\frac{9}{2n-1}$
Áît=2n-1£¬Ôò $y=t+\frac{9}{t}$£¬¡àt=5£¬¼´n=3ʱ£¬$-a£¼\frac{34}{5}$£¬¼´$a£¾-\frac{34}{5}$£¬
µ±nΪżÊýʱ£¬$a£¼2n-1+\frac{9}{2n-1}$£¬
ÓÖ$2n-1+\frac{9}{2n-1}¡Ý2\sqrt{9}=6$£¬
µ±n=2ʱȡ¡°=¡±£¬¡àa£¼6£¬
×ÛÉÏÌÖÂÛµÃ$-\frac{34}{5}£¼a£¼6$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁеÄÖ¤Ã÷£¬¿¼²éÊýÁеÄǰnÏîºÍ¹«Ê½µÄÇ󷨣¬¿¼²éʵÊýµÄȡֵµÄÇ󷨣¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èçͼ£¬¶¨Ô²C°ë¾¶Îª2£¬AΪԲCÉϵÄÒ»¸ö¶¨µã£¬BΪԲCÉϵ͝µã£¬ÈôµãA£¬B£¬C²»¹²Ïߣ¬ÇÒ|$\overrightarrow{AB}$$-t\overrightarrow{AC}$|$¡Ý|\overrightarrow{BC}$|¶ÔÈÎÒât¡Ê£¨0£¬+¡Þ£©ºã³ÉÁ¢£¬Ôò $\overrightarrow{AB}$$•\overrightarrow{AC}$=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®£¨1£©Ëĸö²»Í¬Çò·ÅÈë±àºÅΪ1£¬2£¬3£¬4µÄËĸöºÐÖУ¬ÔòÇ¡ÓÐÒ»¸ö¿ÕºÐµÄ·Å·¨ÓжàÉÙÖÖ£¿
£¨2£©ÉèÓбàºÅΪ1£¬2£¬3£¬4£¬5µÄÎå¸öÇòºÍ±àºÅΪ1£¬2£¬3£¬4£¬5µÄºÐ×ÓÏÖ½«Õâ5¸öÇòͶÈë5¸öºÐ×ÓÒªÇóÿ¸öºÐ×Ó·ÅÒ»¸öÇò£¬²¢ÇÒÇ¡ºÃÓÐÁ½¸öÇòµÄºÅÂëÓëºÐ×ÓºÅÂëÏàͬ£¬ÎÊÓжàÉÙÖÖ²»Í¬µÄ·½·¨£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®µÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒS10=100£¬S100=10£¬ÔòS110=-110£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖª¼¯ºÏP={x||x|£¼1}£¬Q={x|x2-2£¼0£¬x¡ÊZ}£¬ÔòP¡ÉQ={0}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®£¨1£©Èô²»µÈʽ|x-m|£¼1³ÉÁ¢µÄ³ä·Ö²»±ØÒªÌõ¼þΪ$\frac{1}{3}$£¼x£¼$\frac{1}{2}$£¬ÇóʵÊýmµÄȡֵ·¶Î§£®
£¨2£©ÒÑÖªa£¬bÊÇÕýÊý£¬ÇÒa+b=1£¬ÇóÖ¤£º£¨ax+by£©£¨bx+ay£©¡Ýxy£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖª½Ç¦ÈµÄÖձ߹ýµã£¨2£¬3£©£¬Ôòtan£¨$\frac{11¦Ð}{4}$+¦È£©=£¨¡¡¡¡£©
A£®-$\frac{1}{5}$B£®$\frac{1}{5}$C£®-5D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®¡°¦Ë£¼1¡±ÊÇ¡°ÊýÁÐan=n2-2¦ËnΪµÝÔöÊýÁС±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Ö±Ïßx+y-2=0ºÍax-y+1=0µÄ¼Ð½ÇΪ$\frac{¦Ð}{3}$£¬ÔòaµÄֵΪ2¡À$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸