精英家教网 > 高中数学 > 题目详情
7.如图,定圆C半径为2,A为圆C上的一个定点,B为圆C上的动点,若点A,B,C不共线,且|$\overrightarrow{AB}$$-t\overrightarrow{AC}$|$≥|\overrightarrow{BC}$|对任意t∈(0,+∞)恒成立,则 $\overrightarrow{AB}$$•\overrightarrow{AC}$=4.

分析 对|$\overrightarrow{AB}$$-t\overrightarrow{AC}$|≥|$\overrightarrow{BC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|两边平方,并设$\overrightarrow{AB}$•$\overrightarrow{AC}$=m,整理可得关于t的一元二次不等式,再由不等式恒成立思想,运用判别式小于等于0,求得m的值.

解答 解:|$\overrightarrow{AB}$$-t\overrightarrow{AC}$|≥|$\overrightarrow{BC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,
两边平方可得,${\overrightarrow{AB}}^{2}$-2t$\overrightarrow{AB}$•$\overrightarrow{AC}$+t2${\overrightarrow{AC}}^{2}$≥${\overrightarrow{AB}}^{2}$-2$\overrightarrow{AB}$•$\overrightarrow{AC}$+${\overrightarrow{AC}}^{2}$,
设$\overrightarrow{AB}$•$\overrightarrow{AC}$=m,
则22t2-2tm-(22-2m)≥0,
又|$\overrightarrow{AB}$$-t\overrightarrow{AC}$|$≥|\overrightarrow{BC}$|对任意t∈(0,+∞)恒成立,
则判别式△=4m2+4×4(4-2m)≤0,
化简可得(m-4)2≤0,
由于(m-4)2≥0,则m=4,
即$\overrightarrow{AB}$•$\overrightarrow{AC}$=4.
故答案为:4.

点评 本题考查了平面向量的数量积运算,以及不等式恒成立问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{x^2}{4}-\frac{y^2}{12}=1$的离心率为e,抛物线x=my2的焦点为(e,0),则实数m的值为(  )
A.4B.$\frac{1}{4}$C.8D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.抛物线y=-2x2的焦点坐标是(  )
A.(0,$\frac{1}{8}$)B.(0,-$\frac{1}{8}$)C.($\frac{1}{8}$,0)D.(-$\frac{1}{8}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(2,m),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则m=(  )
A.-4B.4C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.等差数列{an}的前n项和为Sn,若S9=45,则3a4+a8=(  )
A.10B.20C.35D.45

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一元二次不等式-2x2-x+6≥0的解集为[-2,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,在正三棱柱ABC-A1B1C1中,点D在边BC上,AD⊥C1D.
(1)求证:平面ADC1⊥平面BCC1B1
(2)如果点E是B1C1的中点,求证:AE∥平面ADC1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用反证法证明命题“若abc=0,则a,b,c中至少有一个为0”时,假设正确的是(  )
A.假设a,b,c都不为0B.假设a,b,c不都为0
C.假设a,b,c至多有一个为0D.假设a,b,c都为0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设Sn是数列{an}的前n项和,${a_1}=1,S_n^2={a_n}({S_n}-\frac{1}{2})(n≥2)$
(1)求证数列$\left\{{\frac{1}{S_n}}\right\}$是等差数列,并求Sn
(2)设bn=$\frac{S_n}{2n+3},{T_n}={b_1}+{b_2}+{b_3}+…+{b_n}$,求Tn
(3)若对任意正整数n不等式(4n2-4n+10)Sn>(-1)n•a恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案