精英家教网 > 高中数学 > 题目详情

某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

(Ⅰ);(Ⅱ)(千件).

解析试题分析:(Ⅰ)根据题意分别写出当时和当时函数解析式,再写成分段函数的形式;(Ⅱ)分类讨论,利用基本不等式求最值.
试题解析:(Ⅰ)因为每件商品售价为0.05万元,则千件商品销售额为0.05×1000万元,依题意得:
时,.            2分
时,=.          4分
所以    6分
(Ⅱ)当时,
此时,当时,取得最大值万元.       8分
时,
此时,当时,即取得最大值1000万元.      11分

所以,当产量为100千件时,该厂在这一商品中所获利润最大,最大利润为1000万元.   12分
考点:1.函数模型的应用;2.基本不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的值域;
(2)若时,函数的最小值为,求的值和函数 的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数,记.
(Ⅰ)求函数的定义域的表达式及其零点;
(Ⅱ)若关于的方程在区间内仅有一解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
①若函数f(x)的值域为R,求实数m的取值范围;
②若函数f(x)在区间(-∞,1-)上是增函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某投资公司年初用万元购置了一套生产设备并即刻生产产品,已知与生产产品相关的各种配套费用第一年需要支出万元,第二年需要支出万元,第三年需要支出万元,……,每年都比上一年增加支出万元,而每年的生产收入都为万元.假设这套生产设备投入使用年,,生产成本等于生产设备购置费与这年生产产品相关的各种配套费用的和,生产总利润等于这年的生产收入与生产成本的差. 请你根据这些信息解决下列问题:
(Ⅰ)若,求的值;
(Ⅱ)若干年后,该投资公司对这套生产设备有两个处理方案:
方案一:当年平均生产利润取得最大值时,以万元的价格出售该套设备;
方案二:当生产总利润取得最大值时,以万元的价格出售该套设备. 你认为哪个方案更合算?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(Ⅰ)求函数的定义域;
(Ⅱ)若存在实数满足,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的定义域,并判断的奇偶性;
(2)用定义证明函数上是增函数;
(3)如果当时,函数的值域是,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(为实数,,),
(Ⅰ)若,且函数的值域为,求的表达式;
(Ⅱ)在(Ⅰ)的条件下,当时,是单调函数,求实数的取值范围;
(Ⅲ)设,且函数为偶函数,判断是否大于

查看答案和解析>>

同步练习册答案