精英家教网 > 高中数学 > 题目详情
求函数f(x)=
x
+
1
x
在x=1处的导数值.
考点:导数的运算
专题:导数的概念及应用
分析:求函数的导数,利用导数公式即可得到结论.
解答: 解:∵f(x)=
x
+
1
x

∴f′(x)=(
x
)′+(
1
x
)′=
1
2
1
x
-
1
2
1
x3

∴f′(1)=
1
2
-
1
2
=0
点评:本题主要考查导数的计算,要求熟练掌握常见函数的导数公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某单位业务人员、管理人员、后勤服务人员人数之比依次为15:3:2.为了了解该单位职员的某种情况,采用分层抽样方法抽出一个容量为n的样本,样本中业务人员人数为30,则此样本的容量n为(  )
A、20B、30C、40D、80

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A为锐角sinA=
3
5
,tan(A-B)=-
1
2

(1)求tanA及cos2A的值  
(2)求tanB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x-2,数列{an}的前n项和为Sn,且点(an,2Sn)在函数y=f(x)的图象上;
(1)求数列{an}的通项公式;
(2)设bn=f(an),数列{bn}的前n项和为Tn,若 
T2n+4n
Tn+2n
<an+1+t对任意的n∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列:
1
1
2
1
1
2
3
1
2
2
1
3
4
1
3
2
2
3
1
4
,…,依它的前10项的规律,这个数列的第2014项a2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,d为常数,已知对?n,m∈N*,当n>m,总有Sn-Sm=Sn-m+m(n-m)d成立
(1)求证:数列{an}是等差数列;
(2)若正整数n,m,k成等差数列,比较Sn+Sk与2Sm的大小,并说明理由;
(3)探究:命题p:“对?n,m∈N*,当n>m时,总有Sn-Sm=Sn-m+m(n-m)d”是命题q:“数列{an}是等差数列”的充要条件吗?请证明你的结论;由此类比,请你写出数列{bn}是等比数列(公比为q,且q≠0)的充要条件(无需证明)?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx),其中常数ω>0.
(1)令ω=
1
2
,求函数F(x)=f(x)+f(x+π)的单调区间;
(2)令ω=2,将函数y=f(x)的图象向左平移
π
6
个单位,再往上平移1个单位,得到函数y=g(x)的图象.对任意的a∈R,求y=g(x)在区间[a,a+10π]上零点个数的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,试判断BD1与平面AEC的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:{x|
x+2≥0
x-10≤0
},q:{x|1-m≤x≤1+m,m>0}.
(1)若m=1,则p是q的什么条件?
(2)若p是q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案