精英家教网 > 高中数学 > 题目详情

【题目】已知复数z2016+(1-i)2(其中i为虚数单位),若复数z的共轭复数为,且·z1=4+3i.

(1)求复数z1

(2)若z1是关于x的方程x2pxq=0的一个根,求实数pq的值,并求出方程x2pxq=0的另一个复数根.

【答案】(1)z1=2-i.(2)p=4,q=5,x=2+i.

【解析】

试题分析:(1)先化简z,再求,由z1=即可得解;

(2)将z1代入方程x2pxq=0,可得(3-2pq)+(p-4)i=0,所以3-2pq=0且p-4=0,进而可得解.

试题解析:

(1)因为z=()2016+(1-i)2=i2016-2i=1-2i,

所以=1+2i,所以z1=2-i.

(2)由题意知(2-i)2p(2-i)+q=0,化简得(3-2pq)+(p-4)i=0,所以3-2pq=0且p-4=0,解得p=4,q=5,

所以方程为x2-4x+5=0,即(x-2)2=-1=i2,解得另一个复数根为x=2+i.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量单位:万元)和收益单位:万元)的数据如下表

月份

广告投入量

收益

他们分别用两种模型①分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值

Ⅰ)根据残差图,比较模型①②的拟合效果,应选择哪个模型?并说明理由

Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除

ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程

ⅱ)若广告投入量时,该模型收益的预报值是多少

附:对于一组数据,……,其回归直线的斜率和截距的最小二乘估计分别为

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品销售价格和销售量与销售天数有关,第x的销售价格(元/百斤),第x的销售量(百斤)(a为常数),且第7天销售该商品的销售收入为2009元.

1)求第10天销售该商品的销售收入是多少?

2)这20天中,哪一天的销售收入最大?为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处有极大值,则常数为( )

A. 2或6 B. 2 C. 6 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y24x6y+120,点A35.

1)将圆C的方程化为标准方程,并写出圆C的圆心坐标及半径r

2)求过点A的圆的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求证:上是单调递减函数;

2)若函数有两个正零点,求的取值范围,并证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2018·湖南师大附中摸底)已知直线l经过点P(-4,-3),且被圆(x+1)2+(y+2)2=25截得的弦长为8,则直线l的方程是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若对于恒成立,求实数的取值范围

(2)若对于恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别是,且.

1)求角的大小;

2)已知等差数列的公差不为零,若,且成等比数列,求数列的前项和.

查看答案和解析>>

同步练习册答案