精英家教网 > 高中数学 > 题目详情
10.如图,已知D是等腰直角三角形ABC斜边BC的中点,AB=$\sqrt{6}$,P是平面ABC外一点,PC⊥平面ABC,DE⊥BP于E,DE=1.
(1)求证:AD⊥平面PBC;
(2)平面ABP与平面CPB所成二面角的大小.

分析 (1)推导出PC⊥AD,AD⊥BC,由此能证明AD⊥平面PBC.
(2)求出BC=2$\sqrt{3}$,PB=3$\sqrt{2}$,PA=2$\sqrt{3}$,连结AE,得∠AED即为平面ABP与平面CPB所成二面角的平面角,由此能求出平面ABP与平面CPB所成二面角的大小.

解答 证明:(1)∵PC⊥面ABC,PD?平面ABC,∴PC⊥AD,
又∵D是等腰直角三角形ABC斜边BC的中点,∴AD⊥BC,
∵PC∩BC=C,∴AD⊥平面PBC.
解:(2)∵D是等腰直角三角形ABC斜边BC的中点,AB=$\sqrt{6}$,
∴BC=$\sqrt{6+6}$=2$\sqrt{3}$,
∵PC⊥平面ABC,DE⊥BP于E,DE=1,∴Rt△PCB∽Rt△EDB,
∴$\frac{DE}{PC}=\frac{BE}{BC}$,∴PC=$\frac{DE•BC}{BE}$=$\frac{1×2\sqrt{3}}{\sqrt{3-1}}$=$\sqrt{6}$,
∴PB=$\sqrt{6+12}$=3$\sqrt{2}$,PA=$\sqrt{6+6}$=2$\sqrt{3}$,
连结AE,
∵AD⊥平面PBC,DE⊥PB,∴∠AED即为平面ABP与平面CPB所成二面角的平面角,
AD=$\sqrt{3}$,AE=$\sqrt{3+1}$=2,
sin∠AED=$\frac{AD}{AE}$=$\frac{\sqrt{3}}{2}$,∠AED=60°.
∴平面ABP与平面CPB所成二面角的大小为60°.

点评 本题考查线面垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=|x-2|-|x+1|.
(1)解不等式f(x)>1;
(2)当x>0时,函数g(x)=$\frac{a{x}^{2}-x+1}{x}$(a>0)的最小值总大于函数f(x),试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知cos(α+$\frac{β}{2}$)=$\frac{\sqrt{3}}{3}$,cos($\frac{α}{2}$-β)=$\frac{1}{3}$,其中0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π.
(1)求tan(2α+β)的值;
(2)求cos(3α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是(  )
A.y=$\frac{1}{x}$B.y=|x|C.y=e-xD.y=-x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,AB是⊙O的一条弦,延长AB到点C,使得AB=BC,过点B作BD⊥AC且DB=AB,连接AD与⊙O交于点E,连接CE与⊙O交于点F.
(Ⅰ)求证:D,F,B,C四点共圆;
(Ⅱ)若AB=$\sqrt{6}$,DF=$\sqrt{3}$,求BE2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示的几何体中,AD⊥平面APB,AD∥BC,AP⊥PB.
(1)求证:平面PAD⊥平面PBC;
(2)若AB=BC=2AD=2AP=2,点Q在线段AB上,且AQ=$\frac{1}{4}$AB,求二面角C-PQ-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱柱ABC-A1B1C1中,平面ABB1A1⊥平面BCC1B1,AB⊥BB1,AB=BC=2,BB1=4,∠BCC1=60°.
(I)求证:C1B⊥AC;
(Ⅱ)求二面角A-B1C-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,⊙O的圆心O在Rt△ABC的直角边BC上,AB、AC都是⊙O的切线,M是AB与⊙O相切的切点,N是⊙O与BC的交点.
(Ⅰ)证明:MN∥AO;
(Ⅱ)若AC=3,MB=2,求CN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=lnx+$\frac{a}{x}$在区间[2,+∞)上单调递增,则a的取值范围为(  )
A.(-∞,2]B.(-∞,2)C.[2,+∞)D.[-2,2]

查看答案和解析>>

同步练习册答案