精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
a•2x+a-1
2x+1

(1)确定a的值,使f(x)为奇函数;
(2)在(1)的条件下,解关于x的不等式f[loga(x+1)]+f[loga
1
3x-5
)]>0.
(1)∵f(x)为奇函数,
∴f(-x)=-f(x),
a-
1
2-x+1
=-a+
1
2x+1

2a=
1
2x+1
+
1
2-x+1
=
1
2x+1
+
2x
2x+1
=1

a=
1
2

f(x)=
1
2
-
1
2x+1

(2)f(x)定义域为(-∞,+∞),原函数即f(x)=
1
2
-
1
2x+1
,易得f(x)为R上的增函数.
由f[loga(x+1)]+f[loga
1
3x-5
)]>0.
得f[loga(x+1)]>-f[loga
1
3x-5
)]=f[-loga
1
3x-5
)]=f([loga(3x-5)],
∵f(x)为R上的增函数.
∴loga(x+1)>loga(3x-5),
若a>1,则
x+1>3x-5
3x-5>0
,解得
5
3
<x<3

若0<a<1,则
x+1<3x-5
x+1>0
,解得x>3.
综上:a>1,不等式的解集为{x|
5
3
<x<3
}.
当0<a<1,不等式的解集为{x|x>3}.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设f(x)=lg(
2
1-x
+a)是奇函数,则使f(x)<0的x的取值范围是(  )
A.(-1,0)B.(0,1)C.(-∞,0)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-2ax-(2a+2)
(Ⅰ)解关于x的不等式f(x)>x;
(Ⅱ)若f(x)+3≥0在区间(-1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=ln(
1+9x2
-3x)-1,则f(x)+f(-x)=(  )
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

二次函数f(x)=x2+2ax+2a+1.
(1)若对任意x∈R有f(x)≥1恒成立,求实数a的取值范围;
(2)讨论函数f(x)在区间[0,1]上的单调性;
(3)若对任意的x1,x2∈[0,1]有|f(x1)-f(x2)|≤1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义域与值域相同的奇函数称为“八卦函数”,下列函数中是“八卦函数”的是(  )
A.y=
2013x+2013-x
2
B.y=ln
2014-x
2014+x
C.y=x-
1
3
D.y=|x|

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
ax2-(1+a)x+1

(1)当a=0时,求证函数f(x)在它的定义域上单调递减
(2)是否存在实数a使得区间[-1,1]上一切x都满足f(x)≤
3
,若存在,求实数a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x|x-a|(x∈R).
(1)判断f(x)的奇偶性,并证明;
(2)求实数a的取值范围,使函数g(x)=f(x)+2x+1在R上恒为增函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)为奇函数,g(x)为偶函数,若f(x)-g(x)=(
1
2
x,则f(1)-g(-2)=______.

查看答案和解析>>

同步练习册答案