精英家教网 > 高中数学 > 题目详情
4.如图,四边形ABCD为菱形,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF⊥平面ABCD,AB=AE=2,G为EF中点.
(Ⅰ)求证:OG∥平面ABE;
(Ⅱ)求二面角D-BE-A的正弦值;
(Ⅲ)当直线OF与平面BDE所成角为45°时,求异面直线OF与DE所成角的余弦值.

分析 (Ⅰ)推导出AE∥CF,OG∥AE,由此能证明OG∥平面ABE.
(Ⅱ)分别以OD、OA、OG为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角D-BE-A的正弦值.
(Ⅲ)设F(0,-1,a),$\overrightarrow{OF}$=(0,-1,a),由OF与平面BDE所成角为45°,利用向量法求出a,由此能求出异面直线OF与DE所成角的余弦值.

解答 证明:(Ⅰ)∵AE⊥平面ABCD,CF⊥平面ABCD,∴AE∥CF,
∵四边形ABCD为菱形,∴O为AC中点,
又G为EF中点,∴OG∥AE,
∵OG?面ABE,AE?平面ABE,
∴OG∥平面ABE.
解:(Ⅱ)分别以OD、OA、OG为x,y,z轴,
建立空间直角坐标系,
则D($\sqrt{3}$,0,0),E(0,1,2),B(-$\sqrt{3}$,0,0),
A(0,1,0),
$\overrightarrow{DE}$=(-$\sqrt{3}$,1,2),$\overrightarrow{BE}$=($\sqrt{3},1,2$),
$\overrightarrow{BA}$=($\sqrt{3},1,0$),
设平面BDE的法向量$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{-\sqrt{3}x+y+2z=0}\\{\sqrt{3}x+y+2z=0}\end{array}\right.$,取y=2,得$\overrightarrow{m}$=(0,2,-1),
设平面ABE的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BE}=\sqrt{3}x+y+2z=0}\\{\overrightarrow{n}•\overrightarrow{BA}=\sqrt{3}x+y=0}\end{array}\right.$,取y=3,得$\overrightarrow{n}$=(-$\sqrt{3},3,0$),
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{6}{\sqrt{5}•2\sqrt{3}}$=$\frac{\sqrt{15}}{5}$,
∴sin<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\sqrt{10}}{5}$,
∴二面角D-BE-A的正弦值为$\frac{\sqrt{10}}{5}$.
(Ⅲ)设F(0,-1,a),$\overrightarrow{OF}$=(0,-1,a),
∵OF与平面BDE所成角为45°,∴$\frac{|-2-a|}{\sqrt{5}•\sqrt{{a}^{2}+1}}$=$\frac{\sqrt{2}}{2}$,
解得a=3,或a=-$\frac{1}{3}$(舍),
∴$\overrightarrow{OF}$=(0,-1,3),cos<$\overrightarrow{OF},\overrightarrow{DE}$>=$\frac{5}{2\sqrt{2}•\sqrt{10}}$=$\frac{\sqrt{5}}{4}$,
∴异面直线OF与DE所成角的余弦值为$\frac{\sqrt{5}}{4}$.

点评 本题考查点到平面的距离、二面角等基础知识,考查推理论证能力、运算求解能力、空间想象能力、数据处理能力,考查函数与方程思想、化归与转化思想、数形结合,考查创新意识、应用意识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.下列推理正确的是(  )
A.如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖
B.因为a>b,a>c,所以a-b>a-c
C.若a,b均为正实数,则lga+lgb≥2$\sqrt{lga•lgb}$
D.若ab<0,则$\frac{a}{b}$+$\frac{b}{a}$=-[(-$\frac{a}{b}$)+(-$\frac{b}{a}$)]≤-2$\sqrt{(-\frac{a}{b})(-\frac{b}{a})}$≤-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知抛物线y2=8x的准线与双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{16}$=1相交于A,B两点,点F为抛物线的焦点,△ABF为直角三角形,则双曲线的离心率为(  )
A.3B.$\sqrt{2}+1$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx+x2-ax(a∈R).
(Ⅰ)当a=3时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)有两个极值点x1,x2,且x1∈(0,1],证明f(x1)-f(x2)≥-$\frac{3}{4}$+ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(x-$\frac{1}{\sqrt{x}}$)6的展开式中x3的系数为15,(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设实数a,b,c分别满足2a3+a=2,blog2b=1,clog5c=1,则a,b,c的大小关系为(  )
A.a>b>cB.b>a>cC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.记U={1,2,…,100},对数列{an}(n∈N*)和U的子集T,若T=∅,定义ST=0;若T={t1,t2,…,tk},定义ST=a${\;}_{{t}_{1}}$+a${\;}_{{t}_{2}}$+…+a${\;}_{{t}_{k}}$.例如:T={1,3,66}时,ST=a1+a3+a66.现设{an}(n∈N*)是公比为3的等比数列,且当T={2,4}时,ST=30.
(1)求数列{an}的通项公式;
(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:ST<ak+1
(3)对任意正整数k(1≤k≤100),若T={1,2,…,k},记数列{$\frac{1}{{S}_{T}}$}的前k项和为H,求证:H<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合M={x|x2+x-2=0,x∈R},N={x|x<0,x∈R},则M∩N=(  )
A.ϕB.{1}C.{-2}D.{-2,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设数列{an}的前n项和为Sn,已知a1=1,${a_{n+1}}=\frac{n+2}{n}{S_n}$(n∈N*).
(1)证明:数列$\left\{{\frac{S_n}{n}}\right\}$是等比数列;
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

同步练习册答案