精英家教网 > 高中数学 > 题目详情
6.点P( x,y )的坐标满足关系式$\left\{\begin{array}{l}{2x+y≥15}\\{x+3y≥27}\\{x≥2}\\{y≥3}\end{array}\right.$且x,y均为整数,则z=x+y的最小值为12,此时P点坐标是(3,9)或(4,8).

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=x+y的最小值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=x+y得y=-x+z,平移直线y=-x+z,
由图象可知当直线y=-x+z经过点A时,
直线y=-x+z的截距最小,此时z最小.
由$\left\{\begin{array}{l}{2x+y=15}\\{x+3y=27}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=\frac{18}{5}}\\{y=\frac{39}{5}}\end{array}\right.$,即A($\frac{18}{5}$,$\frac{39}{5}$),
∵x,y均为整数,∴点A不满足条件.
∵$\frac{18}{5}$+$\frac{39}{5}$=11$\frac{2}{5}$,
∴此时x+y=11$\frac{2}{5}$,
若x+y=12,得y=12-x,
代回不等式组得:$\left\{\begin{array}{l}{2x+12-x≥15}\\{x+3(12-x)≥27}\\{x≥2}\\{12-x≥3}\end{array}\right.$,即$\left\{\begin{array}{l}{x≥3}\\{x≤\frac{9}{2}}\\{x≥2}\\{x≤9}\end{array}\right.$,
即3≤x≤$\frac{9}{2}$,
∵x是整数,
∴x=3或x=4,
若x=3,则y=9,
若x=4,则y=8,
即P(3,9)或P(4,8),
即z=x+y的最小值为12,
故答案为:12,(3,9)或(4,8)

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.本题由于x,y是整数,需要进行调整最优解.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年四川成都石室中学高二理下期中数学试卷(解析版) 题型:选择题

如图,该程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输出的,则输入的分别可能为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,则(  )
A.f(-3)<f(-2)<f(1)B.f(1)<f(-2)<f(-3)C.f(-2)<f(1)<f(-3)D.f(-3)<f(1)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,若|AF|=5,则|BF|=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设b和c分别是先后抛掷一颗骰子得到的点数,则方程x2-bx+c=0有实根的概率为$\frac{19}{36}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“?x0∈R,2x0≤0”的否定是(  )
A.不存在x0∈R,2x0>0B.?x0∈R,2x0≤0
C.?x∈R,2x≤0D.?x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在区间[0,2π]上满足e0-eπ≤θ-sinθ-π的θ的取值范围是[0,2π].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.过点M(2,0)作直线L交双曲线x2-y2=1于A,B两点,若动点P满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$.
(1)求P点的轨迹方程;
(2)是否存在这样的直线L,使OAPB为矩形,若存在,求出L的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0相互平行”的充要条件是(  )
A.“a=-2或a=1”B.“a=1”C.“a=-2”D.“a=2或a=-1”

查看答案和解析>>

同步练习册答案