¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬Èç¹ûÂú×㣺¶ÔÈÎÒâx¡ÊD£¬´æÔÚ³£ÊýM£¾0£¬¶¼ÓÐ|f£¨x£©|¡ÜM³ÉÁ¢£¬Ôò³Æf£¨x£©ÊÇDÉϵÄÓн纯Êý£¬ÆäÖÐM³ÆΪº¯Êýf£¨x£©µÄÉϽ磮
£¨1£©ÅжϺ¯Êýf£¨x£©=x2-2x+2£¬x¡Ê[0£¬2]ÊÇ·ñÊÇÓн纯Êý£¬Çëд³öÏêϸÅжϹý³Ì£»
£¨2£©ÊÔÖ¤Ã÷£ºÉèM£¾0£¬N£¾0£¬Èôf£¨x£©£¬g£¨x£©ÔÚDÉÏ·Ö±ðÒÔM£¬NΪÉϽ磮ÇóÖ¤£ºº¯Êýf£¨x£©+g£¨x£©ÔÚDÉÏÒÔM+NΪÉϽ磻
£¨3£©Èôf(x)=1+a•(
1
2
)x+(
1
4
)x
ÔÚ[0£®+¡Þ£©ÉÏÊÇÒÔ3ΪÉϽçµÄÓн纯Êý£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1ÏÈÅжϺ¯ÊýÔÚ[0£¬2]Éϵĵ¥µ÷ÐÔ£¬´Ó¶ø¿ÉµÃº¯ÊýµÄÖµÓò£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨2£©ÀûÓÃf£¨x£©£¬g£¨x£©ÔÚDÉÏ·Ö±ðÒÔM£¬NΪÉϽ磬¿ÉµÃ-M¡Üf£¨x£©¡ÜM£¬-N¡Üg£¨x£©¡ÜN£¬´Ó¶ø¿ÉµÃº¯Êýf£¨x£©+g£¨x£©ÔÚDÉÏÒÔM+NΪÉϽ磻
£¨3£©ÀûÓö¨Òå¿ÉµÃ-3¡Ü1+a•(
1
2
)x+(
1
4
)x¡Ü3
ÔÚ[0£®+¡Þ£©ÉϺã³ÉÁ¢£¬»»Ôª£¬ÔÙ·ÖÀë²ÎÊýÇó×îÖµ£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º£¨1£©½â£º¡ßf£¨x£©=x2-2x+2ÔÚ[0£¬1]Éϵݼõ£¬ÔÚ[1£¬2]ÉϵÝÔö
¡àµ±x¡Ê[0£¬2]ʱ£¬1¡Üf£¨x£©¡Ü2
¡àµ±x¡Ê[0£¬2]ʱ£¬|f£¨x£©|¡Ü2
¡àº¯Êýf£¨x£©=x2-2x+2£¬x¡Ê[0£¬2]ÊÇÓн纯Êý¡­£¨4·Ö£©
£¨2£©Ö¤Ã÷£º¡ßf£¨x£©£¬g£¨x£©ÔÚDÉÏ·Ö±ðÒÔM£¬NΪÉϽ磬¡à-M¡Üf£¨x£©¡ÜM£¬¡à-N¡Üg£¨x£©¡ÜN
¡à-£¨M+N£©¡Üf£¨x£©+g£¨x£©¡ÜM+N£¬¼´|f£¨x£©+g£¨x£©|¡ÜM+N
¡àº¯Êýf£¨x£©+g£¨x£©ÔÚDÉÏÒÔM+NΪÉϽ磻¡­£¨8·Ö£©
£¨3£©½â£º¡ßf(x)=1+a•(
1
2
)x+(
1
4
)x
ÔÚ[0£®+¡Þ£©ÉÏÊÇÒÔ3ΪÉϽçµÄÓн纯Êý
¡à-3¡Ü1+a•(
1
2
)x+(
1
4
)x¡Ü3
ÔÚ[0£®+¡Þ£©ÉϺã³ÉÁ¢£¬
¼Ç(
1
2
)x=t£¬t¡Ê(0£¬1]
£¬¡à-3¡Ü1+a•t+t2¡Ü3ÔÚt¡Ê£¨0£¬1]ʱºã³ÉÁ¢£®
¡à
a¡Ü
2
t
-t
a¡Ý-(t+
4
t
)
ÔÚt¡Ê£¨0£¬1]ʱºã³ÉÁ¢£®
º¯Êýy=
2
t
-t
ÔÚ£¨0£¬1]Éϵ¥µ÷µÝ¼õ£¬
¡àa¡Ü1£»y=-(t+
4
t
)
ÔÚt¡Ê£¨0£¬1]Éϵ¥µ÷µÝÔö£¬¡àa¡Ý-5£®
¡àʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ-5¡Üa¡Ü1¡­£¨13·Ö£©
µãÆÀ£º±¾Ì⿼²éж¨Ò壬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬¿¼²éºã³ÉÁ¢ÎÊÌ⣬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬Èç¹ûÂú×㣺¶ÔÈÎÒâx¡ÊD£¬´æÔÚ³£ÊýM£¾0£¬¶¼ÓÐ|f£¨x£©|¡ÜM³ÉÁ¢£¬Ôò³Æf£¨x£©ÊÇDÉϵÄÓн纯Êý£¬ÆäÖÐM³ÆΪº¯Êýf£¨x£©µÄÉϽ磮
ÒÑÖªº¯Êýf£¨x£©=1+a•£¨
1
2
£©x+£¨
1
4
£©x£»g£¨x£©=
1-m•x2
1+m•x2

£¨¢ñ£©µ±a=1ʱ£¬Çóº¯Êýf£¨x£©ÖµÓò²¢ËµÃ÷º¯Êýf£¨x£©ÔÚ£¨-¡Þ£¬0£©ÉÏÊÇ·ñΪÓн纯Êý£¿
£¨¢ò£©Èôº¯Êýf£¨x£©ÔÚ[0£¬+¡Þ£©ÉÏÊÇÒÔ3ΪÉϽçµÄÓн纯Êý£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÒÑÖªm£¾-1£¬º¯Êýg£¨x£©ÔÚ[0£¬1]ÉϵÄÉϽçÊÇT£¨m£©£¬ÇóT£¨m£©µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬Èç¹ûÂú×ã¶ÔÈÎÒâx¡ÊD£¬´æÔÚ³£ÊýM£¾0£¬¶¼ÓÐ|f£¨x£©|¡ÜM³ÉÁ¢£¬Ôò³Æf£¨x£©ÊÇDÉϵÄÓн纯Êý£¬ÆäÖÐM³ÆΪº¯Êýf£¨x£©µÄÉϽ磬ÒÑÖªº¯Êýf£¨x£©=1+x+ax2
£¨1£©µ±a=-1ʱ£¬Çóº¯Êýf£¨x£©ÔÚ£¨-¡Þ£¬0£©ÉϵÄÖµÓò£¬ÅжϺ¯Êýf£¨x£©ÔÚ£¨-¡Þ£¬0£©ÉÏÊÇ·ñΪÓн纯Êý£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Èôº¯Êýf£¨x£©ÔÚx¡Ê[1£¬4]ÉÏÊÇÒÔ3ΪÉϽçµÄÓн纯Êý£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬Èç¹ûÂú×㣺¶ÔÈÎÒâx¡ÊD£¬´æÔÚ³£ÊýM£¾0£¬¶¼ÓÐ|f£¨x£©|¡ÜM³ÉÁ¢£¬Ôò³Æf£¨x£©ÊÇDÉϵÄÓн纯Êý£¬ÆäÖÐM³ÆΪº¯Êýf£¨x£©µÄÉϽ磮ÒÑÖªº¯Êýf(x)=1+a•(
1
2
)x+(
1
4
)x
£» g(x)=
1-m•x2
1+m•x2

£¨1£©Èôº¯Êýf£¨x£©ÔÚ[0£¬+¡Þ£©ÉÏÊÇÒÔ3ΪÉϽçµÄÓн纯Êý£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨2£©ÒÑÖªm£¾-1£¬º¯Êýg£¨x£©ÔÚ[0£¬1]ÉϵÄÉϽçÊÇT£¨m£©£¬ÇóT£¨m£©µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚ¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬Èô´æÔÚ¾àÀëΪdµÄÁ½ÌõÖ±Ïßy=kx+m1ºÍy=kx+m2£¬Ê¹µÃ¶ÔÈÎÒâx¡ÊD¶¼ÓÐkx+m1¡Üf£¨x£©¡Ükx+m2ºã³ÉÁ¢£¬Ôò³Æº¯Êýf£¨x£©£¨x¡ÊD£©ÓÐÒ»¸ö¿í¶ÈΪdµÄͨµÀ£®¸ø³öÏÂÁк¯Êý£º¢Ùf(x)=
1
x
£¬¢Úf£¨x£©=sinx£¬¢Ûf(x)=
x2-1
£¬ÆäÖÐÔÚÇø¼ä[1£¬+¡Þ£©ÉÏͨµÀ¿í¶È¿ÉÒÔΪ1µÄº¯ÊýÓУ¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçÓÒͼËùʾ£¬¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬Èç¹ûÂú×㣺¶Ô?x¡ÊD£¬³£ÊýA£¬¶¼ÓÐf£¨x£©¡ÝA³ÉÁ¢£¬Ôò³Æº¯Êýf£¨x£©ÔÚDÉÏÓÐϽ磬ÆäÖÐA³ÆΪº¯ÊýµÄϽ磮£¨Ìáʾ£ºÍ¼Öеij£ÊýA¿ÉÒÔÊÇÕýÊý£¬Ò²¿ÉÒÔÊǸºÊý»òÁ㣩
£¨1£©ÊÔÅжϺ¯Êýf(x)=x3+
48
x
ÔÚ£¨0£¬+¡Þ£©ÉÏÊÇ·ñÓÐϽ磿²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÒÑ֪ijÖʵãµÄÔ˶¯·½³ÌΪS(t)=at-2
t+1
£¬ÒªÊ¹ÔÚt¡Ê[0£¬+¡Þ£©ÉϵÄÿһʱ¿Ì¸ÃÖʵãµÄ˲ʱËÙ¶ÈÊÇÒÔA=
1
2
ΪϽçµÄº¯Êý£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸