【题目】某公司为了提高利润,从2012年至2018年每年对生产环节的改进进行投资,投资金额与年利润增长的数据如下表:
年 份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
投资金额(万元) | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
年利润增长(万元) | 6.0 | 7.0 | 7.4 | 8.1 | 8.9 | 9.6 | 11.1 |
(1)请用最小二乘法求出y关于x的回归直线方程;如果2019年该公司计划对生产环节的改进的投资金额是8万元,估计该公司在该年的年利润增长是多少?(结果保留2位小数)
(2)现从2012—2018年这7年中抽取2年进行调查,记
=年利润增长-投资金额,求这两年都是
>2(万元)的概率.
参考公式:回归方程
中,
![]()
【答案】(1)
,11.43;(2)![]()
【解析】
(1)由题意计算平均数和回归系数,写出回归直线方程,利用方程计算x=8时
的值即可;
(2)设2012年--2018年这7年分别定为1,2,3,4,5,6,7;则由题意列举出所有总的基本事件,找到符合条件的个数,计算概率即可.
(1)
,
,
,
∴
,
,
那么回归直线方程为:
将
代入方程得![]()
即估计该公司在该年的年利润增长大约为11.43万元.
(2)由题意可知,
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
| 1.5 | 2 | 1.9 | 2.1 | 2.4 | 2.6 | 3.6 |
设2012年--2018年这7年分别定为1,2,3,4,5,6,7;则总基本事件为:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7),共有21种结果,
选取的两年都是
万元的情况为:(4,5),(4,6),(4,7),(5,6),(5,7),(6,7),共6种,所以选取的两年都是
万元的概率
.
科目:高中数学 来源: 题型:
【题目】某公司有4家直营店
,
,
,
,现需将6箱货物运送至直营店进行销售,各直营店出售该货物以往所得利润统计如下表所示.根据此表,该公司获得最大总利润的运送方式有
![]()
A.
种 B.
种 C.
种 D.
种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知动点P与两定点F1(﹣1,0)、F2(1,0)的连线的斜率之积为
,求动点P的轨迹方程.
(2)已知双曲线的渐近线方程为y=±
x,且与椭圆
1有公共焦点,求此双曲线的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线C的参数方程为
(其中
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系中,直线
的极坐标方程为
.
(Ⅰ)求C的普通方程和直线
的倾斜角;
(Ⅱ)设点
(0,2),
和
交于
两点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
的圆心在直线
:
上,与直线
:
相切,且截直线
:
所得弦长为6
(Ⅰ)求圆
的方程
(Ⅱ)过点
是否存在直线
,使以
被圆
截得弦
为直径的圆经过原点?若存在,写出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
的底面是直角梯形,
,
,
和
是两个边长为2的正三角形,
,
为
的中点,
为
的中点.
![]()
(1)证明:
平面
.
(2)在线段
上是否存在一点
,使直线
与平面
所成角的正弦值为
?若存在,求出点
的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知(sinB+sinC)(b﹣c)=(sinA+sinC)a.
(1)求B;
(2)已知b=4,△ABC的面积为
,求△ABC的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com