精英家教网 > 高中数学 > 题目详情
7.已知数列{an}为等差数列,a1+a2+a3=3,a5+a6+a7=9,则a10=(  )
A.4B.5C.6D.7

分析 依题意得:a1+a2+a3=3a2=3,从而a2=1;同样的方法得到a6=3,最后根据a2+a6=2a4得到a4=2,所以d=$\frac{1}{2}$,则a10=a6+4d.

解答 解:∵数列{an}为等差数列,
∴a1+a2+a3=3a2=3,a5+a6+a7=3a6=9,
∴a2=1,a6=3,
∵a2+a6=2a4
∴a4=$\frac{1}{2}$(a2+a6)=2,
∴2d=a6-a4=1,
则d=$\frac{1}{2}$,
∴a10=a6+4d=3+2=5.
故选:B.

点评 本题给出一个特殊的等差数列,在已知连续3项和的情况下,运用等差中项求未知项,着重考查了等差数列的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.抛物线x=-8y2的焦点坐标是(  )
A.(-$\frac{1}{32}$,0)B.(-2,0)C.($\frac{1}{32}$,0)D.(0,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一条光线从点A(-4,0)射入,与直线y=3相交于点B(-1,3),经直线y=3反射后过点C(m,-1),直线l过点C且分别与x轴和y轴的负半轴交于P,Q两点,O为坐标原点,则当△OPQ的面积最小时直线l的方程为(  )
A.$\frac{x}{4}$-$\frac{y}{4}$=1B.$\frac{x}{2}$-$\frac{y}{6}$=1C.$\frac{x}{6}$-$\frac{y}{2}$=1D.$\frac{x}{12}$-$\frac{3y}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=4x-2x+2-6,其中x∈[0,3]
(1)求函数f(x)的 最大值和最小值
(2)实数a满足f(x)-a≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=aex-1-$\sqrt{x}$+1的图象在点(1,f(1))处的切线斜率为$\frac{5}{2}$,则实数a=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若集合A={-1,1},B={0,2},则集合{z|z=2x2+y,x∈A,y∈B}中的元素的个数为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知{an}为等差数列,a1+a3+a5=156,a2+a4+a6=147,{an}的前n项和为Sn,则使得Sn达到最大值时n是(  )
A.19B.20C.21D.22

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|a-1<x<1-a},B={x|x≤-1,或x≥1},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$f(x)=\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x}\;,x≥4}\\{f(x+1)\;,x<4}\end{array}}\right.$,则f(log23)=(  )
A.$\frac{1}{24}$B.$\frac{1}{19}$C.$\frac{1}{11}$D.$-\frac{23}{8}$

查看答案和解析>>

同步练习册答案