精英家教网 > 高中数学 > 题目详情
19.通过市场调查,得到某种产品的资金投入x万元与获得的利润y万元的数据,如表所示:
资金投入x23456
利润y23569
(1)根据上表提供的数据,用最小二乘法求线性回归方程;
(2)现投入资金10万元,求获得利润的估计值为多少万元?
(参考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_1}}-n\bar x\bar y}}{{\sum_{i=1}^n{{x_i}^2}-n{{\bar x}^2}}}$,$\hat a=\bar y-\hat b\bar x$)

分析 (1)根据上表提供的数据,求出样本中心坐标,以及$\hat{b}$,代入回归直线方程求出$\hat{a}$,即可求线性回归方程;
(2)现投入资金10万元,利用回归直线方程,直接求获得利润的估计值.

解答 解:(1)$\overline{x}=\frac{2+3+4+5+6}{5}=4$,…2'
$\overline{y}=\frac{2+3+5+6+9}{5}=5$.…4'
$\widehat{b}=\frac{\sum _{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum _{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{2×2+3×3+4×5+5×6+6×9-5×4×5}{4+9+16+25+36-5×16}$=1.7,…6',
$\hat a=\bar y-\hat b\overline{x}=5-1.7×4=-1.8$,
所以回归直线方程为:$\hat y=1.7x-1.8$.…8'
(2)当x=10万元时,$\hat{y}=1.7×10-1.8=15.2$万元.…10'

点评 本题考查用最小二乘法求线性回归方程,以及回归直线方程的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=(1,-2,2),$\overrightarrow{b}$=(2,-1,2),那么向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角等于(  )
A.-arccos$\frac{8}{9}$B.π-arccos$\frac{8}{9}$C.arccos$\frac{8}{9}$D.π+arccos$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个,则三种粽子各取到1个的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.随机变量ξ的概率分布规律为P(X=n)=$\frac{a}{n(n+1)}$(n=1、2、3、4),其中a为常数,则P($\frac{9}{4}$<X<$\frac{13}{4}$)的值为(  )
A.$\frac{2}{3}$B.$\frac{5}{48}$C.$\frac{4}{5}$D.$\frac{5}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆x2+y2=10,直线x-y-1=0与圆交于B,C两点,则线段BC的中点坐标为($\frac{1}{2}$,-$\frac{1}{2}$),线段BC的长度为$\sqrt{38}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设Sn是非负等差数列{an}的前n项和,m,n,p∈N+,若m+n=2p,求证:
(1)Sn,S2n-Sn,S3n-S2n成等差数列;
(2)$\frac{1}{S_m}+\frac{1}{S_n}≥\frac{2}{S_p}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知△ABC的三边长分别为AB=5,BC=4,AC=3,M是AB边上的点,P是平面ABC外一点,给出下列四个命题:
①若PA⊥平面ABC,则三棱锥P-ABC的四个面都是直角三角形;
②若PM⊥平面ABC,且M是AB边的中点,则有PA=PB=PC;
③若PC=5,PC⊥平面ABC,则△PCM面积的最小值为$\frac{15}{2}$;
④若PB=5,PB⊥平面ABC,则三棱锥P-ABC的外接球体积为$\frac{{125\sqrt{2}π}}{3}$;
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=|1-x2|,在[0,1]上任取一数a,在[1,2]上任取一数b,则满足f(a)≤f(b)的概率为$\frac{6-π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A、B、C对边分别为a、b、c,若a:b:c=7:8:13,则C=120°.

查看答案和解析>>

同步练习册答案