精英家教网 > 高中数学 > 题目详情
2.如图,在正方体ABCDA1B1C1D1中,求证:平面AB1D1∥平面C1BD;

分析 利用直方图与平行四边形的性质可得:BC1∥AD1,利用线面平行的判定定理可得BC1∥平面AB1D1,同理可得:BD∥平面AB1D1,即可证明:平面C1BD∥平面AB1D1

解答 证明:∵ABCD-A1B1C1D1为正方体,
∴在平行四边形ABC1D1中,BC1∥AD1
又AD1?平面AB1D1,BC1?平面AB1D1
∴BC1∥平面AB1D1
同理可得:BD∥平面AB1D1,且BC1∩BD=B,
∴平面C1BD∥平面AB1D1

点评 本题考查了空间位置关系与空间角、线面、面面平行的判定与性质定理、线面、面面垂直的判定与性质定理、空间角,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.执行程序框图,则最后输出的i=9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设U={x∈Z|-3≤x≤3},A={1,2,3},B={-1,0,1},C={-2,0,2}
求:(1)A∪(B∩C);  
(2)A∩∁U(B∪C)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设各项均为正数的数列{an}的前n项和为Sn满足$a_{n+1}^2=4{S_n}+4n+1,n∈{N^*}$,且a2,a5,a14恰好是等比数列{bn}的前三项.记数列{bn}的前n项和为Tn,若对任意的n∈N*,不等式$({T_n}+\frac{3}{2})•k≥3n-6$恒成立,则实数k的取值范围是$[\frac{2}{27},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知f(x+1)=x2-3x+2,求f(x)的解析式.
(2)已知f(x)=x2-2kx-8在[1,4]上具有单调性,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)满足$f(x)-2f(\frac{1}{x})=\frac{3}{x^2}$,则f(x)的最大值是(  )
A.-2B.$-2\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}满足a3=2,前3项和S3=$\frac{9}{2}$.
(Ⅰ)求{an}的通项公式.
(Ⅱ)设等比数列{bn}满足b1=a1,b4=a15,求{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.过椭圆C:$\frac{{x_{\;}^2}}{{a_{\;}^2}}+\frac{{y_{\;}^2}}{{b_{\;}^2}}=1$(a>b>0)的左顶点A且斜率为k的直线交椭圆C于另一点B.且点B在x轴上射影恰好为右焦点F,若$\frac{1}{6}<|k|<\frac{1}{3}$,则椭圆C的离心率取值范围是(  )
A.($\frac{2}{3},\frac{5}{6}$)B.($\frac{2}{3}$,1)C.($\frac{1}{4},\frac{3}{4}$)D.($\frac{1}{4},\frac{5}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知矩阵A=$[\begin{array}{l}{1}&{b}\\{-1}&{a}\end{array}]$(a,b∈R),若点P(1,1)在矩阵A对应的变换作用下得到点P′(-1,1).
(1)求实数a,b的值;
(2)求矩阵A的特征值.

查看答案和解析>>

同步练习册答案