精英家教网 > 高中数学 > 题目详情
8.已知d为常数,p:对于任意n∈N*,an+2-an+1=d;q:数列 {an}是公差为d的等差数列,则¬p是¬q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 先根据命题的否定,得到¬p和¬q,再根据充分条件和必要的条件的定义判断即可.

解答 解:p:对于任意n∈N*,an+2-an+1=d;q:数列 {an}是公差为d的等差数列,
则¬p:?n∈N*,an+2-an+1≠d;¬q:数列 {an}不是公差为d的等差数列,
由¬p⇒¬q,即an+2-an+1不是常数,则数列 {an}就不是等差数列,
若数列 {an}不是公差为d的等差数列,则不存在n∈N*,使得an+2-an+1≠d,
即前者可以推出后者,前者是后者的充分条件,
即后者可以推不出前者,
故选:A.

点评 本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=4t}\\{y=1+3t}\end{array}}\right.$(t为参数),圆C的参数方程为$\left\{{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数) 则圆C上的点到直线l的距离的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{3}$.且过点($\frac{\sqrt{6}}{2}$,1).
(1)求椭圆C的标准方程;
(2)设直线l过椭圆C的右焦点F且与椭圆C交于A,B两点,在椭圆C上是否存在点P,使得当l绕F转到某一位置时,有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立?若存在,求出所有的P的坐标与l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设F1(-c,0),F2(c,0)分别是椭圆E:$\frac{x^2}{a^2}$+${\frac{y}{b^2}^2}$=1(a>b>0)的左、右焦点.
(Ⅰ)若点P($\sqrt{3}$,2)在椭圆E上,且c=$\sqrt{3}$,求椭圆E的方程;
(Ⅱ)已知椭圆E的离心率为$\frac{{\sqrt{2}}}{2}$,若过点F1(-c,0)的直线交椭圆E于A,B两点,且|AF1|=3|F1B|.证明:AB⊥AF2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,椭圆C上的动点到焦点距离的最小值为$\sqrt{2}$-1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆C上一点,若过点M(2,0)的直线l与椭圆C相交于不同的两点S和T,满足$\overrightarrow{OS}$$+\overrightarrow{OT}$=t$\overrightarrow{OP}$(O为坐标原点),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在直角坐标系xoy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}}$,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为$ρsin(θ+\frac{π}{4})=4\sqrt{2}$.设P为曲线C1上的动点,则点P到C2上点的距离的最小值为3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过平面α外一直线m,作平面与α平行,这样的平面有0或1个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列1,-1,-3,-5,…,则-89是它的第(  )项.
A.92B.47C.46D.45

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A、B、C的对边分别为a、b、c,且a>b,已知cosC=$\frac{4}{5}$,c=3$\sqrt{2}$,sinAcos2$\frac{B}{2}$+sinBcos2$\frac{A}{2}$=$\frac{\sqrt{2}+1}{2}$sinC.
(1)求a和b的值;
(2)求cos(B-C)的值.

查看答案和解析>>

同步练习册答案