精英家教网 > 高中数学 > 题目详情
16.已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{3}{2}+t}\\{y=\sqrt{3}t}\end{array}\right.$( t为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系.曲线C的坐标方程是ρsin2θ-6cosθ=0.
(1)求曲线 C的直角坐标方程以及直线l的极坐标方程;
(2)求直线l与曲线C交于M,N两点,求|MN|的值.

分析 (1)由ρsinθ=y,ρcosθ=x,能求出曲线C的直角坐标方程;先把直线l的参数方程化为直角坐标方程,再由ρsinθ=y,ρcosθ=x,能求出直线l的极坐标方程.
(2)联立$\left\{\begin{array}{l}{{y}^{2}=6x}\\{2\sqrt{3}x-2y-3\sqrt{3}=0}\end{array}\right.$,得${y}^{2}-2\sqrt{3}y-9$=0,由此利用弦长公式能求出|MN|的长.

解答 解:(1)∵曲线C的坐标方程是ρsin2θ-6cosθ=0,
∴ρ2sin2θ-6ρcosθ=0,
∵ρsinθ=y,ρcosθ=x,
∴曲线C的直角坐标方程为y2=6x.
∵直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{3}{2}+t}\\{y=\sqrt{3}t}\end{array}\right.$( t为参数),
∴直线l的直角坐标方程为$2\sqrt{3}x-2y-3\sqrt{3}$=0,
∵ρsinθ=y,ρcosθ=x,
∴直线l的极坐标方程为2$\sqrt{3}ρ$cosθ-2ρsinθ-3$\sqrt{3}$=0.
(2)联立$\left\{\begin{array}{l}{{y}^{2}=6x}\\{2\sqrt{3}x-2y-3\sqrt{3}=0}\end{array}\right.$,得${y}^{2}-2\sqrt{3}y-9$=0,
$△=(-2\sqrt{3})^{2}+4×9$=48>0,
设M(x1,y1),N(x2,y2),则y1+y2=2$\sqrt{3}$,y1y2=-9,
∴|MN|=$\sqrt{1+{k}^{2}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{1+3}$•$\sqrt{12+36}$=8$\sqrt{3}$.

点评 本题考查曲线直角坐标方程、直线的极坐标方程的求法,考查两线段和的求法,考查极坐标方程、参数方程、直角坐标方程等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年河北省高二理上第一次月考数学试卷(解析版) 题型:填空题

把38化为二进位制数为______

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.画出求$\frac{1}{1+{2}^{2}}$+$\frac{1}{2+{3}^{2}}$+$\frac{1}{3+{4}^{2}}$+…+$\frac{1}{99+10{0}^{2}}$的值的算法框图,并编写基本算法语句.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.我市2016年11月1日~11月30日对空气污染指数的监测数据如下(主要污染物可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,83,82,82,64,79,86,85,75,71,49,45.
样本频率分布表:
分组频数频率
[41,51)2$\frac{2}{30}$
[51,61)1$\frac{1}{30}$
[61,71)4$\frac{4}{30}$
[71,81)6$\frac{6}{30}$
[81,91)10$\frac{10}{30}$
[91,101)
[101,111)2$\frac{2}{30}$
(Ⅰ)完成频率分布表;
(Ⅱ)作出频率分布直方图;
(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2(1+3sin2θ)=4,曲线C2:$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}$(θ为参数).
(Ⅰ)求曲线C1的直角坐标方程和C2的普通方程;
(Ⅱ)极坐标系中两点A(ρ1,θ0),B(ρ2,θ0+$\frac{π}{2}$)都在曲线C1上,求$\frac{1}{ρ_1^2}$+$\frac{1}{ρ_2^2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知动圆M恒过F(1,0)且与直线x=-1相切,动圆圆心M的轨迹记为C;直线x=-1与x轴的交点为N,过点N且斜率为k的直线l与轨迹C有两个不同的公共点A,B,O为坐标原点.
(1)求动圆圆心M的轨迹C的方程,并求直线l的斜率k的取值范围;
(2)点D是轨迹C上异于A,B的任意一点,直线DA,DB分别与过F(1,0)且垂直于x轴的直线交于P,Q,证明:$\overrightarrow{OP}•\overrightarrow{OQ}$为定值,并求出该定值;
(3)对于(2)给出一般结论:若点$F({\frac{p}{2},0})$,直线$x=-\frac{p}{2}$,其它条件不变,求$\overrightarrow{OP}•\overrightarrow{OQ}$的值(可以直接写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设Sn,Tn分别是数列{an},{bn}的前n项和,已知对于任意n∈N*,都有3an=2Sn+3,数列{bn}是等差数列,且T5=25,b10=19.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=$\frac{{a}_{n}{b}_{n}}{n(n+1)}$,求数列{cn}的前n项和Rn,并求Rn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.成都七中112岁生日当天在操场开展学生社团活动选课超市,5名远端学生从全部六十多个社团中根据爱好初选了3个不同社团准备参加.若要求这5个远端学生每人选一个社团,而且这3 个社团每个社团都有远端学生参加,则不同的选择方案有150种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(a)=(3m-1)a+b-2m,当m∈[0,1]时,0≤f(a)≤1恒成立,则$\frac{{{b^2}-{a^2}}}{ab}$的范围是[0,$\frac{15}{4}$].

查看答案和解析>>

同步练习册答案