精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=$\frac{(x-2)^{2}}{{x}^{2}+4}$,x∈[-1,1]的最大值为M,最小值为m,则M+m等于(  )
A.-1B.0C.1D.2

分析 化简函数,利用y=$\frac{4x}{{x}^{2}+4}$是[-1,0)∪(0,1]上的奇函数,即可求出M+m.

解答 解:x=0时,f(x)=1,
x≠0时,f(x)=1-$\frac{4x}{{x}^{2}+4}$.
∵y=$\frac{4x}{{x}^{2}+4}$是[-1,0)∪(0,1]上的奇函数,函数f(x)=$\frac{(x-2)^{2}}{{x}^{2}+4}$,x∈[-1,1]的最大值为M,最小值为m,
∴M+m=2,
故选:D.

点评 本题考查函数的最值,考查奇函数的性质,正确化简,判断函数是奇函数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.求函数y=$\sqrt{{x}^{2}+x-6}$的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=ax-b的图象如图所示,其中a,b为常数,则a,b满足的条件为0<a<1,b<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数值域:
(1)y=$\frac{2x}{5x+1}$;
(2)y=2x+1-$\sqrt{7-4x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解关于x的不等式:$\frac{(a+1)x-2}{x-1}<1$(a是常数且a>0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点到渐进线距离等于实轴长,则双曲线C的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.2$\sqrt{5}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若定义域在[0,1]的函数f(x)满足:
①对于任意x1,x2∈[0,1],当x1<x2时,都有f(x1)≥f(x2);
②f(0)=0;
③$f(\frac{x}{3})=\frac{1}{2}$f(x);
④f(1-x)+f(x)=-1,
则$f(\frac{1}{3})+f(\frac{9}{2017})$=-$\frac{17}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC三个内角A,B,C的对边分别为a,b,c,且c=$\sqrt{3}$asinC+ccosA
(1)求角A
(2)若a=2$\sqrt{3}$,bc=4,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解下列不等式:|x+3|+|2x-3|≥3.

查看答案和解析>>

同步练习册答案