精英家教网 > 高中数学 > 题目详情
已知A(0,1),B(2,1),C(3,4),D(-1,2),问这四点能否在同一个圆上?若能在同一个圆上,求出圆的方程,若不能在同一圆上,说明理由.
考点:圆的一般方程
专题:计算题,直线与圆
分析:利用待定系数法,即可求出圆的方程.
解答: 解:设经过A,B,C三点的圆的方程为(x-a)2+(y-b)2=r2.则…(2分)
a2+(1-b)2=r2
(2-a)2+(1-b)2=r2
(3-a)2+(4-b)2=r2
…(6分)
解此方程组,得a=1,b=3,r=
5
 …(9分)
所以,经过A、B、C三点的圆的标准方程是(x-1)2+(y-3)2=5.…(10分)
把点D的坐标(-1,2)代入上面方程的左边,得(-1-1)2+(2-3)2=5.
所以,点D在经过A,B,C三点的圆上,
所以A,B,C,D四点在同一个圆上,圆的方程为(x-1)2+(y-3)2=5.…(12分)
点评:本题考查圆的一般方程,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下面一组图形为三棱锥P-ABC的底面与三个侧面.已知AB⊥BC,PA⊥AB,PA⊥AC.

(1)在三棱锥P-ABC中,求证:平面ABC⊥平面PAB;
(2)在三棱锥P-ABC中,M是PA的中点,且PA=BC=3,AB=4,求三棱锥P-MBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M、N两点,若|MN|≤2
3
,则k的取值范围是(  )
A、[
3
3
]
B、(0,
3
]
C、(-∞,-
3
3
]∪[
3
3
,+∞)
D、[-
3
3
3
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)计算(0.25) 
1
2
-[-2×(
3
7
0]2×[(-2)3] 
4
3
+(
2
-1)-1-2 
1
2

(2)解方程:lg(x+1)+lg(x-2)=lg4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log
1
2
1-kx
x-1
为奇函数
(1)求常数k的值;
(2)设h(x)=
1-kx
x-1
,证明函数y=h(x)在(1,+∞)上是减函数;
(3)若函数g(x)=f(x)-(
1
2
)x
+m,且g(x)在区间[3,4]上没有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足
(x-2)2+(y-2)2≤1
y≥2
,则
y
x
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

掷两枚骰子,记事件A为“向上的点数之和为n”.
(1)求所有n值组成的集合;
(2)n为何值时事件A的概率P(A)最大?最大值是多少?
(3)设计一个概率为0.5的事件(不用证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

某校要进行特色学校评估验收,有甲、乙、丙、丁、戊五位评估员将随机取A,B,C三个班进行随班听课,要求每个班级至少有一位评估员.
(1)求甲、乙同时去A班听课的概率;
(2)设随机变量ξ为这五名评估员去C班听课的人数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l,m,平面α,β满足l⊥α,m?β,则“l⊥m”是“α∥β”的(  )
A、充要条件
B、充分不必要条件
C、必要不充分条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案