精英家教网 > 高中数学 > 题目详情
已知正项数列{an}的前n项和为Sn,且满足Sn+Sn-1=k
a
2
n
+2(n≥2,n∈N*,k>0),a1=1.
(1)求数列{an}的通项公式;
(2)若数列{
1
anan+1
}的前n项和为Tn,是否存在常数k,使得Tn<2对所有的n∈N*都成立?若存在,求出k的取值范围;若不存在,请说明理由.
分析:(1)再写一式,两式相减,即可得到结论;
(2)利用裂项求和,可得使得Tn<2对所有的n∈N*都成立,只需要k+k2≤2(k>0),即可得到结论.
解答:解:(1)∵Sn+Sn-1=k
a
2
n
+2,∴Sn+1+Sn=k
a
2
n+1
+2
两式相减可得(an+1+an)[(an+1-an)-
1
k
]=0
∵正项数列{an},
an+1-an=
1
k
(n≥2)
∵S2+S1=k
a
2
2
+2,a1=1
a2=
1
k

∴an=
1,n=1
n-1
k
,n≥2

(2)由题意,T1=k,
当n≥2时,Tn=k+
k2
1×2
+…+
k2
(n-1)n
=k+k2(1-
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
)
=k+k2(1-
1
n
)

∵Tn=k+k2(1-
1
n
)
<k+k2
∴使得Tn<2对所有的n∈N*都成立,只需要k+k2≤2(k>0),
∴0<k≤1.
点评:本题考查数列的通项与求和,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求证:数列{
an
2n+1
}
为等差数列,并求数列{an}的通项an
(2)设bn=
1
an
,求数列{bn}的前n项和为Sn,并求Sn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:称
n
a1+a2+…+an
为n个正数a1,a2,…,an的“均倒数”,已知正项数列{an}的前n项的“均倒数”为
1
2n
,则
lim
n→∞
nan
sn
(  )
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列an中,a1=2,点(
an
an+1)
在函数y=x2+1的图象上,数列bn中,点(bn,Tn)在直线y=-
1
2
x+3
上,其中Tn是数列bn的前项和.(n∈N+).
(1)求数列an的通项公式;
(2)求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}满足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求证:数列{bn}为等比数列;
(2)记Tn为数列{
1
log2bn+1log2bn+2
}
的前n项和,是否存在实数a,使得不等式Tn<log0.5(a2-
1
2
a)
对?n∈N+恒成立?若存在,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an},Sn=
1
8
(an+2)2

(1)求证:{an}是等差数列;
(2)若bn=
1
2
an-30
,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案